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Abstract

We are developing a compiler that translates ordinary
MATLAB scripts into code suitable for compilation and
execution on parallel computers supporting C and the
MPI message-passing library. In this paper we report the
speedup achieved for several MATLAB scripts on three di-
verse parallel architectures: a distributed-memory multi-
computer (Meiko CS-2), a symmetric multiprocessor (Sun
Enterprise Server 4000), and a cluster of symmetric mul-
tiprocessors (Sun SPARCserver 20s). By generating code
suitable for execution on parallel computers, our system
multiplies the gains achievable by compiling, rather than
interpreting, MATLAB scripts. Generating parallel code
has an additional advantage: the amount of primary mem-
ory available on most parallel computers makes it possible
to solve problems too large to solve on a single worksta-
tion.

1. Introduction

Many problems that scientists and engineers want to
solve are computationally intensive. Since parallel com-
puters offer the potential for high computation rates, you
might assume that most computational scientists would
have embraced parallel computing by now. However, two
significant obstacles have prevented the widespread adop-
tion of this new paradigm. First, taking advantage of par-
allel computers has usually required writing code in a new
programming language. Second, even when scientists have
gone to the trouble of developing parallel programs, the
relatively short life-span of parallel computers has meant
that large investments in coding have often yielded only
short-term benefits. For this reason, the use of parallel
computers by computational scientists and engineers is still
the exception, rather than the rule.

However, the emergence of MATLAB as a popular
software package for numerical computation, data analy-

sis, and graphics may change the face of parallel comput-
ing. Unlike FORTRAN 77, MATLAB contains vector and
matrix data types and operations manipulating these data
types. Getting maximum performance from the MATLAB
interpreter involves learning how to eliminate loops by re-
placing series of scalar operations with single vector or
matrix operations. The resulting scripts are amenable to
compilation for parallel computers.

At Oregon State University, we have witnessed scien-
tists switch from FORTRAN to MATLAB because it is
a superior environment for developing numerical models.
We have heard them explain that they plan to debug their
models in MATLAB using a small data set, then convert
their MATLAB scripts to FORTRAN when it is time to run
the model on real data. When the time to re-implement
the program in FORTRAN arrives, they often change their
minds, choosing instead to wait for the MATLAB inter-
preter to execute the script on a large data set, even if it
requires several CPU days.

These two actions—writing MATLAB scripts amenable
to parallelization and choosing to stick with MATLAB
even when solving large problems—create an environment
in which a parallel MATLAB compiler has high utility.
We are implementing a compiler, nicknamed ‘Otter’, that
translates MATLAB scripts into SPMD-style C programs
with calls to the standard MPI message-passing library.
The resulting codes can be executed on sequential or par-
allel computers equipped with a C compiler and the MPI
library (Figure 1).

Our goal is not to implement every function supported
by MATLAB. Rather, we view our system as a vehicle for
exploring the feasibility of compiling high-level languages
into code that executes efficiently on parallel computers.

In this paper we will describe related parallel MATLAB
projects, outline the design of our compiler and run-time
library, and present benchmark results from several appli-
cations executing on three diverse parallel architectures.
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Figure 1. The ‘Otter’ MATLAB compiler and
run-time library enable MATLAB scripts to
be compiled and executed on any parallel
computer supporting a C compiler and the
MPI message-passing library.

2. Related work

Other high-performance MATLAB projects can be di-
vided into two categories: interpreter-based systems and
translators. Interpreter-based systems run MATLAB in-
terpreters in parallel. They extend MATLAB to allow the
distribution and collection of submatrices between a “man-
ager” processor and a collection of “worker” processors.
The MATLAB Toolbox, developed at the University of Ro-
stock in Germany, targets a collection of UNIX worksta-
tions connected on a local area network [10]. MultiMAT-
LAB, developed at Cornell University, initially targeted
conventional parallel computers, such as the IBM SP-2,
but can also be executed on networks of workstations [11].
Wake Forest’s Parallel Toolbox is an SPMD-style program-
ming environment allowing programmers to access MAT-
LAB interpreters running on a network of workstations [6].
Paramat, from Alpha Data Corporation in the United King-
dom, targets a PC add-on multiprocessor board containing
Digital Alpha CPUs [8]. These systems differ from our
software in two ways. First, the nodes execute MATLAB
interpreters, rather than compiled code. Second, they add
explicitly parallel extensions to the MATLAB language,
which puts an additional burden on the user.

We are aware of five MATLAB compilers (or transla-
tors). Two of these compilers generate sequential code.
The MathWorks now sells a compiler which translates
MATLAB scripts into C code. MATCOM, sold by Math-
Tools, translates MATLAB into C++ code suitable for
compilation and execution on single-CPU systems [9].

The other three compilers target parallel computers.
CONLAB, from the University of Umea in Sweden, trans-
lates MATLAB into C with calls to the PICL message-
passing library [4]. It requires that the programmer make
use of parallel extensions to MATLAB.

Perhaps the most sophisticated system is RTExpress¨a,
marketed by Integrated Sensors, which translates MAT-
LAB scripts into C with calls to MPI [7]. Through a
graphical user interface, the programmer selects portions
of the MATLAB script to be executed in parallel, indi-
cating the desired number of processors and the type of
parallelization desired (pipeline, data parallel, task paral-
lel, or round robin). The system then generates a program
suitable for execution on a parallel computer.

The project most similar to ours is the FALCON com-
piler developed at the University of Illinois [2, 3]. It trans-
lates MATLAB scripts, without any parallel extensions or
user annotations, into Fortran 90 code. However, there
is a significant difference between our compiler and the
FALCON project. The Otter compiler translates MATLAB
code directly into SPMD C programs with calls to MPI.
The FALCON compiler generates Fortran 90 code, which
needs another translation step in order to run on a paral-
lel computer. Significantly, no performance results for the
FALCON compiler on multiple-CPU platforms have been
reported.

MATLAB implementations targeting parallel computers
are summarized in Table 1.

3. Compiling

DeRose has provided detailed explanations of the
process of translating MATLAB into Fortran [2, 3]. Our
compiler design is similar to his design in many respects.
Hence in this section we will simply highlight the steps of
our multi-pass compiler, documenting the most significant
differences between the two compilers. In particular, we
will describe what needs to be done to generate an SPMD
parallel C program suitable for execution on a distributed
memory parallel computer.

MATLAB is an imperative language. The individual
statements resemble those in BASIC or FORTRAN. MAT-
LAB programmers produce M-files. An M-file may either
be a script—a series of statements with no input param-
eters and no return values—or a function with optional
parameters, local variables, and one or more return values.



Name Site Implemen-
tation

Paramat Alpha Data Parallel
Systems, UK

Interpreter

CONLAB University of
Umea, Sweden

Compiles to
C/PICL

FALCON University of
Illinois

Compiles to
Fortran 90

MATLAB
Toolbox

University of
Rostock, Germany

Interpreter

Multi-
MATLAB

Cornell University Interpreter

Otter Oregon State
University

Compiles to
C/MPI

Parallel
Toolbox

Wake Forest
University

Interpreter

RTExpressa Integrated Sensors Compiles to
C/MPI

Table 1. Experimental and commercial
MATLAB-based systems targeting parallel
computers. Only FALCON and Otter gen-
erate parallel code from “pure” MATLAB
(i.e., MATLAB without any extensions).

A MATLAB “program” consists of a script, together with
those M-files reachable through a chain of one or more
references from the original script.

Otter is a multi-pass compiler designed to facilitate
the later addition of optimization passes. The first pass
consists of constructing the parse tree for the initial script.
We have constructed the scanner and parser usinglex and
yacc. We are able to scan and parse all of MATLAB’s
syntactic constructs with one exception. The MATLAB
interpreter allows both commas and white space to delimit
elements of a list. To simplify scanning and parsing, we do
not support the use of white space to delimit list elements.
The parser augments the parse tree with additional links
to simplify code analysis. The result is an abstract syntax
tree (AST).

The second pass resolves all of the identifiers used in the
program. Beginning with the original script, it determines
which identifiers correspond to variables and which corre-
spond to functions. User M-file functions identified during
this pass are scanned, parsed, and eventually subjected to
the same identifier resolution algorithm. At the end of this
pass every M-file in the user’s program has been added to

the AST. Unlike DeRose, we do not in-line M-file func-
tions where they are called. This makes the propagation
of type information more difficult, but it reduces the size
of the C programs emitted by the compiler.

The third pass of the compiler determines the type,
shape, and rank of the variables and stores this information
in the symbol table. Correctly identifying these attributes
is essential to generating programs that execute efficiently.
For example, variables may have one of four types: literal,
integer, real, and complex. Recognizing that a variable
is of type real rather than type complex saves half the
memory and significantly reduces the amount of time to
perform operations such as addition or multiplication using
that variable. A variable may have either scalar or matrix
rank. Each matrix variable has an associated shape, i.e.,
the number of rows and columns.

As much as possible, type and rank information is de-
termined at compile time. MATLAB, designed as an in-
terpreted language, allows the attributes of a variable to
change during a program’s execution. We solve this prob-
lem by transforming the program into static single assign-
ment form, which ensures each variable is only assigned
a value once [1]. Once the program is in static single
assignment form, a static inference mechanism extracts in-
formation about variables from input files, constants, op-
erators, and functions. If the user’s program initializes a
variable through external file input, a sample data file must
be present, so that the compiler can determine the type of
the variable as well as its rank. Shape information can be
collected and propagated at run time.

Expression rewriting constitutes the fourth pass of the
compiler. The output of the Otter compiler is a loosely
synchronous, SPMD-style C program with calls to a run-
time library which we have developed. The only paral-
lelism we are exploiting is the data parallelism inherent
in vector and matrix operations. For this reason our de-
sign is able to take advantage of many concepts developed
by groups implementing compilers for data-parallel lan-
guages such as Fortran 90, High Performance Fortran, and
C* [5]. In particular,

1. Scalar variables are replicated across the set of pro-
cessors performing the computation.

2. Matrices are distributed among the local memories
of the processors. Matrices of identical size are dis-
tributed identically.

3. The “owner computes” rule determines which proces-
sors are responsible for executing which operations.

4. Synchronization among processors is accomplished
through message passing.

5. One processor coordinates all I/O operations.



Given these assumptions, the compiler is able to de-
termine which terms and subexpressions may involve in-
terprocessor communication. The compiler must modify
the AST to bring these terms and subexpressions to the
statement level, where they can be translated into calls
to the run-time library. After this has been done, some
element-wise matrix operations may remain. Because the
C programming language does not support element-wise
arithmetic operations on arrays,for loops must be in-
serted to perform these operations one element at a time.

For example, consider the following MATLAB state-
ment involving matricesa, b, c , andd:

a = b * c + d(i,j);

Because matrices are distributed among the memories
of the processors, the multiplication of matricesb and c
involves interprocessor communication. Hence this oper-
ation must be performed via a call to the run-time library.
Matrix elementd(i,j) is owned by a single processor; it
must be broadcast to the other processors. Since matrices
of identical size are allocated to processors identically, ma-
trix addition can be performed without any interprocessor
communication. The compiler creates afor loop which
enables each processor to adds its share of the matrix el-
ements. The resulting code follows:

ML__matrix_multiply(b, c, ML__tmp1);
ML__broadcast(&ML__tmp2, d, i-1, j-1);
for (ML__tmp3 = ML__local_els(a)-1;

ML__tmp3 >= 0; ML__tmp3--)
{

a->realbase[ML__tmp3] = ML__tmp1->
realbase[ML__tmp3] + ML__tmp2;

}

The fifth pass of the compiler looks for statements
manipulating individual elements of matrices, such as:

a(i,j) = a(i,j) / b(j,i)

Statements such as this must be surrounded by a con-
ditional, so that only the processor owning the matrix ele-
ment referenced on the left-hand side of the statement ac-
tually performs the operations on the right-hand side and
assigns the result. For example, the compiler translates the
statement shown above into the following C code:

ML__broadcast(&ML__tmp1, b, j-1, i-1);
if (ML__owner(a, i-1, j-1))
{

*ML__realaddr2(a, i-1, j-1) =
*ML__realaddr2(a, i - 1, j - 1) /
ML__tmp1;

}

The processor storing matrix elementb(j,i) broadcasts
the value to the other processors. Only the processor
owning a(i,j) executes the assignment statement. (The
indices in the output code are decremented by one, because
C arrays are 0–based, while MATLAB arrays are 1–based.)

The sixth pass of the compiler performs “peephole”
optimizations, looking for ways in which a sequence of
run-time library calls can be replaced by a single call.

The final compiler pass traverses the AST, emitting C
code interspersed with calls to the run-time library.

4. Run-time library

The run-time library is responsible for the allocation
and de-allocation of vectors and matrices. It performs
all matrix/vector operations which require interprocessor
communication on a distributed memory parallel computer.

Every matrix and vector is represented on each proces-
sor by a C structure named MATRIX which contains global
information about its type, rank, and shape. This structure
also contains processor-dependent information, such as the
total number of matrix elements stored on a particular pro-
cessor and the address in that processor’s local memory
of its first matrix element. The run-time library function
ML__init initializes the fields of the MATRIX structure.
In the previous section we saw how the compiler is able
to use this information to generatefor loops to perform
element-wise vector and matrix operations.

Run-time library functions perform all matrix manip-
ulations except element-wise operations. For example,
the functionML__owner , passed a pointer to a MATRIX
structure and a pair of indices, returns 1 if and only if the
processor calling the function stores that matrix element.
FunctionML__print_matrix prints the elements of a
matrix. FunctionML__matrix_vector_multiply is
passed pointers to a matrix and two vectors and does
the necessary computations and interprocessor commu-
nications to accomplish the matrix-vector multiplication.
When the function returns, the third argument points to
the result vector.

Data distribution decisions are made within the run-
time library, simplifying the design of the compiler and
making it easier to experiment with alternative data dis-
tribution strategies. In our initial implementation of the
compiler, matrices are distributed in row-contiguous fash-
ion among the memories of the processors, while vectors
are distributed by blocks to the processors.



5. Single processor performance

We have benchmarked the performance of our com-
piler versus The MathWorks’ interpreter and a commercial
compiler on four applications.

The first application solves a positive definite system of
2048 linear equations using the conjugate gradient algo-
rithm. The program makes extensive use of matrix-vector
multiplication and vector dot product.

The second benchmark script is an ocean engineering
application from the Department of Civil Engineering at
Oregon State University. It evaluates the nonlinear wave
excitation force on a submerged sphere using the Morrison
equation. It requires vector shifts, outer products, and calls
to the built-in functiontrapz2 .

The third benchmark script performs ann-body simu-
lation for 5,000 particles. This algorithm uses the built-in
function mean. In addition, it exercises the run-time li-
brary’s broadcast function.

The fourth benchmark script computes the transitive
closure of a512 � 512 matrix through repeated matrix
multiplications. It was chosen to test the speed of the run-
time library’s implementation of matrix multiplication.

We have benchmarked the performance of The Math-
Works’ interpreter, version 2.0.2 of MathTools’ MATCOM
compiler (without BLAS calls), and our compiler (without
BLAS calls). The platform is a single UltraSPARC CPU of
the Sun Enterprise Server 4000. As Figure 2 illustrates, for
these scripts our compiler always outperforms The Math-
Works’ interpreter. Our compiler is competitive with the
MATCOM compiler, outperforming it on two benchmark
scripts and underperforming it on the other two.

6. Performance on diverse
parallel architectures

Our compiler emits SPMD-style parallel programs, al-
lowing us to take advantage of many processors to mul-
tiply the gains achieved by compiling, rather than inter-
preting, MATLAB scripts. This is the principal advantage
of our compiler over commercial MATLAB compilers that
emit sequential code. In this section we present the per-
formance of the four benchmark scripts described in the
previous section. We have executed these scripts on three
diverse parallel architectures: a distributed memory mul-
ticomputer (16–CPU Meiko CS-2), a distributed memory
cluster of symmetric multiprocessors (four Sun SPARC-
server 20s with 4 CPUs each), and a symmetric multipro-
cessor (8–CPU Sun Enterprise Server 4000).

The performance of the conjugate gradient script on our
three target architectures is illustrated in Figure 3. The
figure plots execution speed relative to the speed of The
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Figure 2. Relative performance of The
MathWorks’ interpreter, MATCOM com-
piler, and OSU’s Otter compiler on four
benchmark applications executing on a
single UltraSPARC CPU of a Sun Enterprise
Server 4000.

MathWorks’ interpreter. For example, the compiled script
executing on 16 CPUs of the Meiko CS-2 executes 50
times faster than the interpreter executing the script on a
single CPU of the Meiko CS-2.

Figure 4 plots the performance achieved by the com-
piled ocean engineering script on our three target systems.
The speedup achieved on this application is not as good
because the size of the data set is relatively small, and most
of the operations performed haveO(n) time complexity.
As a result, the grain size of the typical computation is
relatively small, increasing the overall impact of interpro-
cessor communication.

The performance of the compiled script on then-body
simulation script on our three target architectures is illus-
trated in Figure 5. Again, the preponderance ofO(n) oper-
ations limits the opportunities for speedup through parallel
execution.

Our fourth application is transitive closure. The script
computes the transitive closure of ann�n matrix through
logn matrix multiplications. The conventional sequential
matrix multiplication algorithm requiresO(n3) floating-
point operations. Hence this script would seem to be a
good candidate for parallel execution. The performance
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Figure 3. Performance of compiled con-
jugate gradient script relative to the per-
formance of the MATLAB interpreter on a
single CPU.
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Figure 4. Performance of ocean engineer-
ing script relative to the performance of the
MATLAB interpreter on a single CPU.

results, illustrated in Figure 6, bear this out. The compiled
program executes 78 times faster on 16 nodes of the Meiko
CS-2 than the interpreted program executes on a single
processor.

Of the three parallel architectures used as test beds
in this study, the Meiko CS-2 provides the best balance
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Figure 5. Performance of the n-body simu-
lation script relative to the performance of
the MATLAB interpreter on a single CPU.
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Figure 6. Performance of transitive clo-
sure script relative to the performance of
the MATLAB interpreter on a single CPU.

between processor speed, message latency, and aggre-
gate message-passing bandwidth. As a result, it gener-
ally achieves greater speedup than the other two parallel
systems. The most unbalanced system is our cluster of
SPARC 20 SMPs, which are connected by an Ethernet.
The relatively high latency and low bandwidth of the in-
terconnection network puts a severe damper on speedup
achieved beyond four CPUs (the number of CPUs in a
single SMP).



7. Summary

We have designed a compiler that translates MATLAB
scripts into SPMD-style C code suitable for execution on
parallel computers supporting the MPI message-passing
library. The compiler detects data-parallel vector and
matrix operations and generates code (or calls run-time
library functions) that distribute the work across a set
of processors. Currently our system implements a small
number of MATLAB functions.

Our preliminary results indicate that the speedups
achieved through the parallel execution of MATLAB
scripts can vary widely. Two important determinants
are the sizes of the matrices being manipulated and the
complexity of the operations being performed on them.
When the script calls for operations with complexity
(n2)
to be performed on matrices containing several hundred
thousand elements or more, the performance improvement
over The MathWorks’ interpreter can be significant.

Translating MATLAB scripts into parallel code has an
additional, very important advantage: larger problems can
be solved. It is infeasible for the MATLAB interpreter to
solve problems where the aggregate amount of data being
manipulated exceeds the primary memory capacity of a
workstation. In contrast, a parallel computer may have far
more primary memory than an individual workstation.
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