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Abstract
This paper demonstrates that configurationindependentanal-

ysis of shared-memory applications is useful tool to characterize
inherent application characteristics that do not change from one
machine configuration to another. Although traditional configura-
tion dependentanalysis, or simulation, may directly provide more
information about performance on specific configurations, it re-
quires developing a machine model and repeating the analysis for
each target configuration. A judicious combination of the two con-
stitutes a comprehensive and efficient methodology. In this paper,
we use configuration independent analysis to characterize seven
aspects of application behavior: general characteristics; working
sets; concurrency; communication patterns, variation over time,
and locality; and sharing behavior. Case-studies of eight scientific
and commercial benchmarks are used to illustrate the advantages
and limitations of this approach.

1. Introduction
Computer architects increasingly rely on application character-

istics for insight in designing cost-effective systems. Programmers
can use them to identify performance bottlenecks and improve the
performance of their applications. An application analysis tool’s
utility depends on its ability to provide relevant characteristics in
an accurate and timely manner.

We have developed a methodology for characterizing shared-
memory applications and evaluating scalable shared-memory sys-
tem design alternatives. This methodology is based on a set of flex-
ible configuration dependentand configuration independent analy-
sis tools that enable collecting and analyzing data, instruction, and
I/O stream traces of shared memory applications.

Configuration dependent analysis uses a model of the target
system configuration to simulate the application trace and predict
its performance on the target system. The configuration of a mul-
tiprocessor specifies the way that processors are clustered in a hi-
erarchy, the interconnection topology, coherence protocols, cache
configuration, and other system properties that may change from
one system to another. In contrast, configuration independentanal-
ysis extracts the inherent application characteristics directly from
a parallel execution trace.

While configuration dependent analysis is repeated for every
target configuration, configuration independent analysis is per-
formed only once per problem size and number of processors.
Configuration independentanalysis provides a general understand-
ing of an application’s inherent properties and often enables ex-
plaining the results of configuration dependent analysis.

This paper demonstrates that configuration independent analy-
sis is useful for characterizing several important aspects of shared-
memory applications, and is more efficient than configuration de-
pendent analysis in doing so. It can also capture some application
properties that are easily missed by configuration dependent anal-
ysis on a fixed configuration. Judicious use of both configuration
dependentand independentanalysis is an efficient and comprehen-
sive means of characterization.

In this paper, we describe the tools and algorithms used in con-
figuration independent analysis of shared-memory applications,
and use them to characterize eight benchmarks from the Stanford
SPLASH-2, NAS Parallel Benchmarks (NPB), and Transaction
Processing Performance Council (TPC) application suites. Sec-
tion 2 describes some important shared-memory application char-
acteristics and why knowledge of them is useful to architects and
software engineers. Section 3 describes our shared-memory ap-
plication characterization approach. Section 4 describes the eight
case-study benchmarks. Section 5 contains seven subsections,
where each subsection describes how we used configuration inde-
pendent analysis to characterize a particular aspect of the bench-
marks, states the advantages and disadvantages of this approach,
and interprets the results of the eight characterizations. Section 6
presents conclusions.

2. Shared-Memory Application Characteris-
tics

This paper addresses seven characteristics of shared-memory
applications:

� General characteristicsof the application, including dy-
namic instruction count, number of distinct touched instruc-
tions, a parallel execution profile (serial and parallel phases),
number of synchronization barriers and locks, I/O traffic, and
percentage of memory instructions (by type).

� Theworking set[1] of an application in an execution interval
is the number of distinct memory locations accessed in this
interval. The working set size is a measure of the applica-
tion’s temporal locality, which affects itscache performance.
Working set characterization is important for cache size se-
lection for a new system and, during application performance
tuning, for adjusting the working set size to better fit the ex-
isting cache.

� The amount ofconcurrencyavailable in an application influ-
ences how well application performance scales as more pro-
cessors are used. High concurrency implies the potential to
utilize a large number of processors efficiently. The amount
of available concurrency in an application provides insight
in selecting machine size. Characterizing the factors that ad-
versely affect an application’s concurrency helps guide ef-
forts to improve its scalability.

� Communicationin a shared-memory multiprocessor occurs
implicitly when multiple processorsaccess shared memory
locations. Communication occurs in several patterns, de-
pending on the type and order of the accessesand the number
of processors involved. Since coherence misses and traffic
are a function of the communication patterns and the system
configuration, characterizing the volume of various patterns
is important. A successful system design efficiently supports
the common communication patterns of the target applica-
tions. Conversely, pattern characterization enables applica-
tion tuning to avoid expensive patterns.
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� Communication variation over timeis as important as char-
acterizing overall communication volume, as it enables iden-
tifying communication-intensive program segments. Knowl-
edge of the average and peak communication rates helps
specify appropriate bandwidths in the system interconnect.

� Communication localityis a measure of the distance between
the communicating processors. Some applications have lo-
cal communication where a processor tends to communicate
with its near neighbors, and others have uniform communi-
cation where a processor communicates evenly with all other
processors. Knowledge of communication locality is useful
in selecting the system organization and its interconnection
topology, and helps assign threads to physical processors.

� Thesharing behaviorof an application refers to which mem-
ory locations are shared and how. Areal sharedmemory
location is accessed by multiple processors during the pro-
gram execution; only one processor accesses eachprivate
location. Characterizing the behavior of accesses to shared
data helps in mapping application data into the shared and
private spaces of memory so as to reduce access time.

3. Characterization Approach
This section describes our methodology for characteriz-

ing shared-memory applications and evaluating scalable shared-
memory system design alternatives. Four flexible tools enable
collecting and analyzing detailed traces of shared memory appli-
cations as shown in Figure 1. TheShared-Memory Application
Instrumentation Tool(SMAIT) instruments a code for trace col-
lection, theConfiguration Dependent Analysis Tool(CDAT) and
theConfiguration IndependentAnalysis Tool(CIAT) perform trace
analysis, and theTime Distribution Analysis Tool(TDAT) pro-
duces event time distributions.

In Figure 1, a shared-memory multiprocessor is used to execute
and analyze instrumented application codes. However, the analy-
sis tools can also accept trace files. SMAIT supportsexecution-
driven analysisby producing code that (i) generates a trace file
or pipes trace information directly to either CDAT or CIAT and
(ii) accepts feedback to control the execution timing on the host
multiprocessoraccording to CDAT’s simulated configuration or
CIAT’s analysis model. Execution-driven analysis enables ana-
lyzing longer traces by using piping to eliminate storage for huge
trace files and feedback to control the indeterministic behavior of
some applications.

Usually, we first use CIAT to characterize the application char-
acteristics outlined in Section 2. Then we use CDAT to character-
ize other aspects, or to find the application performance and gener-
ated traffic on a particular system configuration. CDAT is used to
characterize things like cache misses and false sharing that depend
on configuration parameters, e.g. cache size and line width. This
paper concentrates on CIAT, more detail on other tools is in [2].

CIAT analyzes application properties that do not change from
one configuration to another, thus relieving CDAT from repeating
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Figure 1. A comprehensive shared-memory application
analysis methodology.

this analysis for every configuration. CDAT, which uses fairly de-
tailed models of the system coherence protocol and system state,
is generally slower than CIAT.

SMAIT has two parts: a perl script program for instrument-
ing PA-RISC [3] assembly language files (based on a tool called
RYO [4]), and a run-time library that is linked with the instru-
mented program. The perl script program replaces some PA-RISC
instructions with calls to run-time library subroutines. During pro-
gram execution, the run-time library generates trace records for the
instrumented memory instructions, taken branches, and synchro-
nization and I/O calls.

In addition to its system-independent characterization report
file, CIAT generates a detailed memory usage file that provides
access information for each accessed memory page. CDAT uses
this file for some policies of mapping memory pages to the sim-
ulated memory banks. CIAT optionally generates a trace of the
communication events that is analyzed by TDAT to characterize
the communication variation over time. TDAT can also analyze
CDAT’s traffic trace. The characterizations reported by these tools
are used to support application tuning, early-stage design of scal-
able shared-memory systems, parameterizing synthetic work-load
generators, comparing alternative design options, and investigat-
ing new design approaches.

CIAT, as in the PRAM model [5], assumes thatp processors
can executep instructions concurrently and each instruction takes
a fixed time. CIAT thus keeps track of time in instruction units.
CIAT interleaves the analysis of multiple thread traces onp pro-
cessors according to the thread spawn and join calls and obeys the
restrictions of the lock and barrier synchronization calls. CIAT ad-
ditionally maintains internal data structures for the accessed mem-
ory locations that are used by its characterization algorithms.

CIAT assumes that the application has one or moreexecution
phases, each with its own properties. CIAT identifies serial and
parallel phases automatically and identifies user-defined phases
delimited by special markers. CIAT reports phase characteristics
at the end of each phase, and also reports aggregate characteristics
over all phases.

4. Applications
We have analyzed Radix, FFT, LU, and Cholesky from

SPLASH-2 [6], CG and SP from NPB [7], and TPC benchmarks C
and D [8, 9]. The SPLASH-2 benchmarks are drawn from scien-
tific, engineering, and graphics computing. NPB mimic the com-
putation and data movement characteristics of large-scale compu-
tational fluid dynamic applications. TPC-C is an on-line transac-
tion processing benchmark.

TPC-D is a decision support application benchmark that per-
forms complex and long-running queries against large databases.
The TPC-D analysis presented in this paper is for a 2.8-Giga in-
struction trace representing the third phase of Query 3 where most
of the query’s time is spent. Compared with other queries, al-
though Query 3 takes a moderate run time, it has high disk I/O and
communication rates [10]. A comprehensive characterization of
TPC-D’s queries is beyond the scope of this paper.

Table 1 shows the set of problem sizes analyzed in this study.
For conducting comparisons, smaller problem sizes were also an-
alyzed, as reported in [11]. The scientific benchmarks were ana-
lyzed on 1 to 32 processors using the default options.

We analyzed the Convex Exemplar [12] implementation of
NPB. However, to get a general characterization of these bench-
marks, we undid some of the Exemplar-specific optimizations.
The six scientific benchmarks were instrumented, compiled, and
analyzed on a 4-node Exemplar SPP1600 running SPP-UX 4.2.

The six scientific benchmarks are multi-threaded,each starts
with a serialinitialization phase, thenp threads are spawned to
run on thep available processors in the mainparallel phase. Then
these threads join and only Thread 0 remains active in thewrap-up
phaseto do validation and reporting. Reported scientific applica-
tion characteristics, unless otherwise stated, are for the parallel
phase using 32 processors.



Table 1. Sizes of the problems analyzed.

Benchmark Problem Size Total Instructions

Radix 2 M integers 0.63 G
FFT 1 M points 0.51 G
LU 512 � 512 0.57 G
Cholesky tk29.O file 2.13 G
CG 14; 000 2.43 G
SP 643 189 G
TPC-C 16 users 1.0 G
TPC-D 1 GB data base 2.8 G

The TPC traces were collected at HP Labs on a 4-CPU HP
server running a commercial database environment. In this con-
figuration, parallelism is exploited using multiple processes. The
TPC-C and TPC-D traces are composed of trace files for 45 and
23 processes, respectively. The OS serves active processes by per-
forming context switching on the limited number of server CPUs.
To capture the characteristics of each process, CIAT runs each pro-
cess trace on a dedicated processor.

These TPC traces include a record for each user-space mem-
ory instruction, taken branch, system call, and synchronization in-
struction (e.g. load-and-clear-word). However, they do not con-
tain information about context switching. Thus, it is impossible
to analyze these traces in the exact occurrence order. For such
cases, CIAT uses a conservative trace scheduling algorithm that
does not violate process synchronization ordering; although this
correctly captures inter-process communication, its conservative
ordering of the slices lengthens execution time, and consequently
does not accurately characterize the concurrency and communica-
tion variation over time of the TPC benchmarks.

5. Characterization Results
The following seven subsections discuss the configuration in-

dependent analysis used, advantages and disadvantages of this ap-
proach, and the results of characterizing the eight benchmarks for
one of the targeted characteristics of shared-memory applications.

5.1. General Characteristics
Each memory instruction accesses one or more consecutive lo-

cations, where each ”location” in CIAT is one byte, e.g. a load-
word instruction accesses four locations. CIAT maintains a hash
table with an entry (status bits and access information) for each
accessed location. One status bit, the code bit, is set when the lo-
cation is accessed by an instruction fetch. CIAT reports the # of
set code bits as ”touched code size” and # of clear code bits as
”touched data size,” as shown in Table 2. While Cholesky and SP
have about 85 KB of touched code, the other four scientific kernels
have less. The TPC benchmarks touch hundreds of code kilobytes
in the traced period.

LU has the smallest data size; CG, the largest. TPC-C’s data
size is larger than TPC-D’s, mainly due to differences in their disk
access patterns. TPC-C processes independent transactions that
generate short random-access disk reads and writes, and uses a
large disk cache in memory to improve disk access time. TPC-D
queries generate long sequential disk reads with little data reuse;
consequently it uses few small memory buffers to temporarily hold
and process disk reads in chunks.

Table 2 also shows five aggregate characteristics of the paral-
lel phase: # of executed instructions, % of memory instructions,
avg. instructions executed per taken branch, and # of barriers and
locks. CG, with the highest percentage of memory instructions and
the largest data size due to its simple reduction operations on long
vectors, can potentially stress the processor cache. The six scien-
tific benchmarks have more instructions between taken branches
than the TPC benchmarks. Infrequent branching is typical of sci-
entific applications which spend most of their time in large-body

Table 3. Disk I/O in TPC-C and TPC-D.
TPC-C TPC-D

No. of disk read calls 18,000 2,800
Average read chunk 1.7 KB 63 KB
No. of disk write calls 4,000 81
Average write chunk 1.5 KB 33 B
Disk I/O bytes per instruction 0.037 0.061
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Figure 2. Percentage of the memory instructions accord-
ing to the instruction type (load or store) and type of data
accessed (byte, half-word, word, or double).

loops with one backward branch. Table 2 also indicates that the
scientific benchmarks use little synchronization; among them, CG
has the fewest instructions per barrier and Cholesky has by far the
most locks. The TPC traces have relatively many synchronization
events, mainly load-and-clear-word instructions andsemop sys-
tem calls. However, trace collection perturbs execution and the
traces have synchronization rates higher than unperturbed execu-
tion. In order to minimize the effect of this perturbation, we ig-
nore all accesses to synchronization variables when characterizing
communication and sharing.

Table 3 shows some disk I/O statistics of the TPC traces. TPC-
C accesses relativelylittle data per diskaccess; most TPC-D disk
accesses are 64 KB reads. Although TPC-D has more disk I/O
bytes per instruction, its disk accesses are predictable which en-
ables hiding their latency by prefetching.

Figure 2 shows the % of load and store accesses to byte,
half-word (2 bytes), word (4 bytes), and double (double-precision
floating-point) data. While the byte and half-word percentage is
negligible in the scientific benchmarks, it is 23% in TPC-C and
32% in TPC-D. CG has the largest percentage of load instructions
due to its reduction operations. The remaining benchmarks aver-
age about 2 loads per store, i.e. typically two operands per result.

Except for Radix, an integer kernel, more than 58% of the
memory instructions in the scientific benchmarks manipulate
double values and almost all the rest manipulate word objects.
Cholesky uses many load-word instructions to find non-zero el-
ement indices of its sparse matrix.

5.2. Working Sets
An application’s working set size is often characterized by sim-

ulations to obtain the miss ratios of fully-associative LRU caches
of various sizes [13, 6]. The knees of a graph of cache miss ratio
vs. cache size then determine the working set sizes; a knee at size
C indicates a working set of size� C. This is a time consuming
procedure. Furthermore, it does not differentiate between coher-
ence and capacity misses, and may over-estimate the working set
size when cache lines are larger than the sizes of individually ac-



Table 2. General characteristics using 32 processors.

Radix FFT LU Cholesky CG SP TPC-C TPC-D

Code size (KB) 9 18 13 88 23 83 820 200
Data size (MB) 17 49 2.0 46 90 30 47 3.5
No. of instructions in (M) 110 480 540 2,000 2,000 190,000 1,000 2,900
Memory Instructions 29% 29% 40% 26% 51% 35% 36% 48%
Instructions/taken branches 33 16 25 24 21 68 10 10
No. of barriers 11 7 67 4 1185 1600 0 0
No. of locks 442 32 32 72,026 0 0 7:9� 105 5:3 � 105
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Figure 3. The cumulative distribution function of the ac-
cess age. A point (x; y) indicates that y% of the ac-
cesses have access age of x bytes or less.

cessed data elements.
CIAT characterizes the inherent working sets of an applica-

tion in one experiment using theaccess ageof each load and
store access. The access age of an instruction accessing location
x is the total number of distinct (1-byte) locations accessed be-
tween this access and the previous access ofx, inclusively. Ac-
cess age is set to1 for the first access ofx. For example, the
word access sequence (A, B, C, A, A, B, B) has access ages
(1;1;1; 12; 4; 12; 4).

The access ages yield the miss ratio of a fully-associative LRU
cache with a line size equal to the size of the smallest accessed
element. For anS-byte cache, every access with age� S is a
hit, every access with age=1 generates a compulsory miss, and
every access with age> S generates a capacity miss. CIAT uses
an efficient algorithm to find the access age, as described in [11].

Figure 3 shows the cumulative access age distribution using 32
processors, ignoring infinite ages. A point(x; y) indicates that
y% of the accesses have access age� x bytes. A distinguishable
rise to a plateau beginning atx bytes indicates that the respective
benchmark has an important working set of size� x.

CG has one important working set of size�512 KB. CG may
incur frequent capacity misses when the cache size is smaller than
this working set size. FFT reaches important plateaus at 32 KB
and 4 MB. TPC-D has better temporal locality than TPC-C; TPC-
C performance could be improved by increasing the cache size
beyond 64 KB.

5.3. Concurrency
Concurrency is often characterized by measuring the execu-

tion time for a number of machine sizes; a good speedup indicates
high concurrency. CIAT characterizes concurrency by measuring
the time (in instructions) that processors spend executing instruc-
tions vs. waiting at synchronization points. Figure 4 shows a 2-
processor execution profile of an application running on a perfect
system (with fixed memory access time and zero synchronization
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Figure 4. Execution profile of a parallel application run-
ning on a perfect system using 2 processors.

overhead). The concurrency is reflected in the busy time relative
to the total time of both processors (P1 and P2).

Figure 4 demonstrates three factors that adversely affect con-
currency: serial fraction, load imbalance, and resource con-
tention. At the application start (T0), P0 is busy in a serial phase
and P1 is idle. AtT1, a parallel phase begins by spawning an exe-
cution thread on P1. P1 joins at the end of the parallel phase (T9)
where P0 starts a final serial phase. Some parallel phase load im-
balance is visible as P0’s synchronization barrier wait atT2 (due
to P1 having more busy cycles (work) than P0) and its join wait
at T8 (due to P0 reaching the join point earlier than P1). P1 fails
to acquire a lock that protects a shared resource atT5, and waits
until P0 releases this lock atT6 before it enters the critical region
and accesses the shared resource betweenT6 andT7.

Based on this model, the application speedup is calculated as

Busy(1)
fBusy(p) + Idle(p) + Imbalance(p) + Contention(p)g=p

wherep = # of processors, Busy(1) = busy time for the basic work
when using one processor, Busy(p) = total busy time summed over
the p processors (Busy(p) � Busy(1) = parallel overhead busy
work including redundant and added computations), Idle(p) = to-
tal idle time during serial phases, Imbalance(p) = total wait time
on barriers and joins, and Contention(p) = total wait time on locks.
Perfect speedup is only possible when the serial fraction, parallel
overhead busy work, imbalance, and contention are zero.

For the scientific benchmarks, Figure 5 shows the total pro-
cessor time spent executing instructions, waiting on barriers and
thread joins due to load imbalance, and waiting on locks due to
resource contention (normalized to the one-processor time). Idle
time is zero because this data is based on the parallel phase only.

Perfect speedup within the parallel phase occurs when the to-
tal busy and wait time does not increase asp increases. LU and
Cholesky may thus have worse speedup than the other four bench-
marks; LU’s load imbalance and Cholesky’s busy time increase as
p increases.

Cholesky has the most lock attempts, but has negligible con-
tention time due to its relatively small critical regions. In
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Cholesky, a processor attempting to acquire a lock usually finds
it free. However, CIAT does not model the overhead in acquiring
and releasing locks. In a machine with high synchronization over-
heads, the contention time may be more significant than reported
by CIAT.

5.4. Communication Patterns
Total (inherent plus artifactual) communication is the traffic

generated by processors when accessing data that is not allocated
in its local memory, including traffic due to inherent coherence
communication, cold-start misses, finite cache capacity, limited
cache associativity, and false sharing [14]. Inherent communica-
tion is that which must occur in order to access a shared location,
assuming that unlimited replication is allowed and that a memory
location’s status is not affected by accesses to other locations (i.e.
no false sharing). CDAT reports total communication; CIAT, in-
herent communication.

CIAT characterizes inherent communication by tracking, for
each memory location, the type and the processor ID of the last ac-
cess. For consecutive load accesses by multiple readers, their IDs
are stored in a sharing vector. CIAT captures the inherent commu-
nication for a shared location whenever the accessing processor’s
ID changes. CIAT classifies communication into four main pat-
terns, and reports the volume of each pattern, and the sharing and
invalidation degrees.

1. Read-after-write(RAW) access occurs when one or more
processors load from a memory location that was stored into
by some processor, and at least one reader is not the writer.
Moreover, when a processor performs multiple loads from
the same memory location, only its first load is counted a
RAW access. The second part of the common producer-
consumer pattern is RAW (the first is WAR).

2. Sharing degreefor RAW is a vectorS, whereS[k] is the
number of times thatk processors loaded from a memory
location after the store into this location.

3. Write-after-read (WAR) access occurs when a processor
stores into a memory location that one or more other pro-
cessors have loaded. A WAR access generates a miss when
the accessed location is not cached. Additionally, with an
invalidate-based cache coherence protocol, it generates in-
validation traffic.

4. Invalidation degreefor WAR is a vectorI , whereI [k] is the
number of times that a memory location was stored into after
previously being loaded byk processors.

5. Write-after-write (WAW) access occurs when a processor
stores into a memory location that was stored into by an-
other processor. This pattern occurs when multiple proces-
sors store without intervening loads, or when processors take
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tion accesses among all data accesses, as a function of
the number of processors for the two problem sizes.

turns accessing a memory location where in each turn a pro-
cessor stores and loads, and its first access is a store.

6. Read-after-read(RAR) access occurs when a processor
loads from a memory location that was loaded by another
processor and the first visible access to this location is a load.
This is an uncommon pattern; it occurs in bad programs that
read uninitialized data. Nevertheless, CIAT sometimes en-
counters this pattern when the data is initialized in untraced
routines. For simplicity, these accesses could be added to the
RAW accesses.

For a particular cache coherence protocol, not all the above ac-
cess patterns generate coherence traffic. For example, for iterative
WAR and RAW with an update-based protocol, RAW accesses are
satisfied from the updated local cache. However, with a store-
invalidate protocol, a RAW access generates coherence traffic to
get the data from the producer’s cache. Additionally, sequential lo-
cality coalesces some CIAT-reported communication events since
each miss operates on a cache line that often contains multiple
shared elements.

Configuration dependent analysis does account for these ef-
fects in the given system configuration. However, it can miss some
inherent communication events. For example, with finite write-
back cache, a RAW access may generate coherence traffic with
large caches in which the written line still resides, but it will not
with a smaller cache that has replaced that line.

Figure 6 shows the distribution among the four communication
patterns. Most communication in these benchmarks is RAW or
WAR. Only Radix has a significant number of WAW accesses due
to permuting sorted keys between two arrays. TPC-C shows some
RAR and WAW accesses which may actually become RAW and
WAR accesses in a complete execution trace that also includes op-
erating system activity. Generally the TPC benchmarks have less
communication and should have a lower coherence miss ratio, es-
pecially when multiple processes are run oneach processor.

The communication percentage generally increases withp due
to (i) the increase in RAW accesses of widely shared data, and
(ii) the increase in boundary elements when the data is partitioned
among more processors. Often, most communication occurs when
accessing boundary elements.

Figure 7 shows the distribution of the 32 possible sharing de-
grees ((S[k]�100=

P
32

i=1
S[i]);k = 1; : : : ; 32) for RAW accesses

when using 32 processors. TPC-C has 45 possible sharing de-
grees and TPC-D has 23. Although only the first 32 are shown,
TPC-C has negligible sharing with degrees higher than 32. Radix,
FFT, SP, TPC-C, and TPC-D have small sharing degree, LU and
Cholesky have medium sharing degree, and CG has large sharing
degree which explains its fast increase in communication percent-
age asp increases.
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Figure 7. RAW sharing degree for 32 processors.
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Figure 8. WAR invalidation degree for 32 processors.

Likewise, Figure 8 shows the distribution of invalidation de-
grees for WAR accesses when using 32 processors ((I [k] �
100=
P

32

i=1
I [i]);k = 1; : : : ; 32). TPC-C has 45 possible inval-

idation degrees and TPC-D has 23. All but LU and Cholesky
have invalidation degree similar to their sharing degree; LU and
Cholesky always have a WAR invalidation degree of 2 and 1, re-
spectively. CG’s large invalidation degree implies that for each
WAR access, a cache coherence protocol will generate many up-
date or invalidate signals. The TPC benchmarks’ singular sharing
and invalidation degrees indicate that most of their communica-
tion occurs in a producer-consumer pattern. However, in TPC-C
the consumer generally updates the communicated value, while in
TPC-D only one producer generally updates each location.

5.5. Communication Variation Over Time
TDAT is used to analyze CIAT’s communication event trace in

which each communication event has a record that specifies the
event type and time (in instructions). The time distribution analy-
sis is summarized as follows:

1. The execution period is divided into 1000-instruction inter-
vals, and the number of communication events in each inter-
val is counted.

2. The communication rate in each interval is calculated as the
number of communication events divided by the product of
the interval size and the number of processors.

3. The communication rate density function is calculated (not
including rate=0 which is excluded to minimize the effect of
the serial initialization phase which has no communication).
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Figure 9. Number of communication events per proces-
sor pair.

4. The density function is integrated to find the distribution
function.

LU, Cholesky, and CG each have a high burst of communica-
tion when the parallel phase starts (P1 through P31 begin to access
the shared data initialized by P0). Radix has two phases of com-
munication (to build the global histogram and to permute the keys
between the two arrays). FFT’s communication occurs in three
phases (when matrix transposition is performed). LU’s communi-
cation is relatively less intense than the other benchmarks and is
periodic with a decreasing cycle, Cholesky’s is not uniform, CG
and SP have periodic communication with fixed cycle (CG has a
simple periodic behavior, SP has more complex periodic behavior
with a longer cycle). For more detail, see [11].

5.6. Communication Locality
CIAT characterizes communication locality by reporting (in the

matrix COMM MAT) the number of communication events for
each processor pair. COMMMAT[ i; j] is the number of commu-
nication events from Pi to Pj which is incremented by one for each
Pj RAW access to a location after a Pi store, each Pj WAW access
to a location after a Pi store, and each Pi invalidation by a WAR
access after a Pj load.

The eight benchmarks differ significantly in their communica-
tion localities. As an example, Figure 9 shows COMMMAT for
TPC-D. Most of TPC-D’s communication is from the first 8 pro-
cesses (which do disk reads and preprocessing) to the second 8
processes. This indicates that parallelism is exploited function-
ally between two 8-process groups and spatially by partitioning
the data into 8 parts. The communication matrices of the other
benchmarks are available in [11].

5.7. Sharing Behavior
The data presented in this section is based on analyzing the

code and data accesses of the whole execution, including the se-
rial phase. Figure 10 shows the number of referenced memory
locations in three classes: code locations, private data locations,
and shared data locations. Code locations are so much fewer than
data locations that the code size is not even visible in the chart.
Generally, more locations become shared asp increases; all the
scientific benchmarks show this trend. Using 32 processors, more
than 93% of Radix, SP, FFT, and LU data locations are shared, but
only 15% in TPC-C and 12% in TPC-D. Furthermore, each ad-
ditional thread may require some new private memory locations,
causing an increase in the size of private memory, and hence total
data memory. This trend is particularly visible in Cholesky, and
somewhat in Radix.

Figure 11 shows the number of private and shared data accesses
relative to the number of data accessesusing one processor. In CG,
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Figure 10. The size of code, private data, and shared data
locations.
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Figure 11. Number of private and shared data accesses
normalized to the number of data accesses using one
processor.

Cholesky, TPC-C, and TPC-D, shared locations are more intensely
accessed than private locations. For example, using 32 processors,
10% of CG’s data locations are shared and these are referenced by
25% of all the data accesses. However, in Radix, SP, FFT, and LU,
shared locations are less intensely accessed. For example, using
32 processors Radix has only 17% of all its accesses to shared
locations. The scientific benchmarks show some increase in the
total number of accesses due to the increase in private accesses
asp increases. However, the large increase in total accesses in
Cholesky is due to increases in both private and shared accesses.

6. Conclusions
Splitting the application analysis into configuration indepen-

dent and configuration dependent analysis provides a clean and ef-
ficient characterization of application performance. Configuration
independent analysis gives a basic understanding of the inherent
properties of an application, while configuration dependent analy-
sis enables a designer to evaluate the application performance on
a particular system design.

We have demonstrated that configuration independent analy-
sis is a viable approach to characterizing shared-memory appli-
cations. CIAT efficiently and mechanically characterizes several
important aspects of a wide range of shared-memory applications.

CIAT characterization of concurrency is informative since it
specifies the application’s serial fraction, parallel overhead busy
work, load balance, and resource contention. Using an algorithm
based on finding the age of the memory accesses, CIAT character-

izes the working sets of an application by doing only one experi-
ment and is not confused by coherence misses. CIAT also charac-
terizes inherent communication which is not affected by capacity,
conflict, or false-sharing misses. It reports the volume of the four
types of communication patterns, and characterizes communica-
tion variation over time.

We have demonstrated our analysis approach by analyzing
eight benchmarks using a varying number of processors. This
study shows the power of this approach and the insights that can be
gained from configuration independent analysis of targeted bench-
marks. The results are reported in a form that can readily be ex-
ploited by application and system designers.
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