
 

Abstract

 

Interprocessor communication times can be a significant
fraction of the overall execution time required for data paral-
lel applications. Large communication to computation ratios
of the tasks performed by these applications results in sub-
optimal performance when executed on data parallel archi-
tectures. We present an alternate architectural framework,
referred to as concurrently communicating SIMD (CCSIMD),
which maintains the SIMD execution model, while introduc-
ing a small degree of task parallelism to exploit the communi-
cation concurrency. We introduce three different
implementations of our architectural framework, and illus-
trate their effect on a suite of data parallel applications.
Results show that CCSIMD architectures can provide a cost-
effective way to hide communication latency in data parallel
applications that can result in an increase in the performance
of these applications. 

 

1.0 Introduction

 

Communication in parallel computing represents the pro-
cess of reading or writing data residing on a remote entity. In
fine-grained SIMD machines, applications typically consist
of interleaved phases of computation and communication.
Consequently the execution time and hence performance of
the applications is heavily dependent on the ability to effi-
ciently carry out the communication as well as the computa-
tional power of the processing elements. During
communication, the computational units in SIMD machines
are forced to be idle, leading to a loss of efficiency. As a
result, communication latency is often considered overhead.
Minimizing this latency can lead to higher utilization of
computing resources, which in turn can increase efficiency
and performance. 

The goal of this work is to explore alternatives for effi-
cient communication in the SIMD class of machines, and
investigate and implement mechanisms which exploit avail-
able concurrency to reduce communication latency for both
regular and irregular communication. We propose a frame-
work to exploit this concurrency, which we call concurrently
communicating SIMD (CCSIMD) and will show that it can
be very effective for a wide range of data parallel applica-
tions. This architectural framework can enhance the execu-
tion time of data parallel applications, and hide the
communication latency incurred during their execution. Fur-
thermore, these benefits can be obtained with a relatively
small investment in hardware resources in both the control
unit and the PEs. 

 

1.1 Related Work

 

Several previous data parallel architectures have imple-
mented 

 

limited

 

 support for concurrent computation and
communication. Examples architectures include the Good-
year MPP [9], SLIM [4], and EXECUBE [8]; however, our
proposed CCSIMD architecture provides a more general
framework. 

 

2.0 Parallel Communication in SIMD

 

A typical SIMD communication network is controlled
centrally by the control unit, transmits messages synchro-
nously, and has circuit-switched links. The communication
channels utilized in the network are half-duplex. SIMD
algorithms are executed in a lock-step manner, and as a
result all active PEs execute the instruction being broadcast
by the controller. The lock-step execution limits the PEs to
either execute a communication or a computation operation,
but not both. Since no overlap between computation and
communication is possible, the PE architecture is designed
to share hardware resources between computation and com-
munication operations. An example of this is the MasPar
MP-1 PE floating point unit which uses the mantissa unit for
serially shifting the messages in or out of the PE during
communication [3]. 

 

2.1 Message properties

 

A message set is a collection of communication primi-
tives originating from all the PEs in the active set

 

1

 

 and ter-
minating at other active or passive PEs in the processor
array. We define a message set to be 

 

simple

 

 if the routing of
its member messages does not produce any contention for
physical links. A 

 

complex

 

 message set, on the other hand,
results in contention for physical links. A physical link set
corresponding to a message set is defined to be the set of
physical links required to route that message set. We define
two message sets to be 

 

mutually exclusive

 

 if the intersection
of their physical links is null. Two message sets are 

 

interfer-
ing

 

 if they are not mutually exclusive. Two message sets are

 

conflicting

 

 or 

 

data-dependent

 

 if one or more src-dest PE
pairs are common to both message sets and the communi-
cated data for those pairs is destined for the same variable.
For a more formal treatment of these issues, see [5]. 

 

3.0 Communication Concurrency in Data 

 

1. The membership of the active set represents PEs which are to execute 
the current instruction being broadcast by the control unit. 
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Parallel Applications

 

There are three types of communication concurrency
which can be exploited: communication and computation
overlap, inter-communication concurrency, and intra-com-
munication concurrency. This parallelism is available with
respect to both local and global parallel communication. 

 

3.1 Concurrent Communication and 
Computation

 

Lock-step execution in SIMD requires that any execution
and communication be performed mutually exclusively. This
disallows the possibility of overlapping the computation and
communication phases in the application. Introduction of
autonomy in the communication network can enable simul-
taneous execution of both communication and computation
operations barring any data dependencies. This would also
require decoupling the communication and computation
resources in the PEs. 

Techniques such as loop unrolling and software pipelin-
ing may be necessary to enhance the communication and
computation overlap in applications. Most SIMD algorithms
are written to fit the current SIMD paradigm which requires
strict lock-step execution. This implies that most programs
have an implicit dependency between the communication
and computation phases and vice versa. With the ability to
hide the latency of communication, these programs can be
manipulated by compiler and/or scheduling techniques to
transform the data dependencies and hence decouple the
communication and computation phases of the algorithm. 

 

3.2 Inter-Communication Concurrency

 

SIMD applications may have communication patterns
that are specified in multiple phases. This implies that the
SIMD instruction stream can have one or more consecutive
communication operations. If the associated message sets
are mutually exclusive, they may be routed at the same time.
With the overlapping of multiple communications, say , the
effective time spent on communication for one phase can be
reduced to 

(1)

where  is the overhead incurred due to contention
from multiple messages in the network. Depending on the
significance of the incurred overhead, it may be possible to
completely hide the communication times for all but the
communication pattern with the longest routing time, and
the time required to issue the other communication instruc-
tions in the network.

 

3.3 Intra-Communication Concurrency

 

Communication phases involving local communication
are typically represented as a series of explicit communica-
tion steps specified with directional control by the program-
mer. As a result intra-communication concurrency does not
exist in these patterns. Global communication on the other
hand is typically specified as simply source destination
pairs, and the global transport mechanism schedules the
communication based on some routing protocol. We expect
to find increased levels of intra-communication concurrency
in global message patterns, since the message set corre-
sponding to these communications can often be represented
as a series of simple message sets with communication in all

of the NEWS directions. This concurrency can be exploited
to reduce latency for global communication significantly. 

Consider the transpose communication pattern as a case
study for this type of concurrency. A global router with full
connectivity such as a crossbar may be able to route this pat-
tern in a single cycle. Other types of global routers may take
longer depending on the degree of connectivity and the
router architecture. Yet another method of dealing with the
transpose communication pattern is to decompose it into a
series of non-conflicting message sets, as illustrated in Fig-
ure 1. The transpose in the figure has been decomposed into
three phases, where in the  phase the PEs  away from
the diagonal exchange messages. 

 

4.0 Concurrently Communicating SIMD 
(CCSIMD)

 

Concurrently Communicating SIMD (CCSIMD) enables
concurrent execution of multiple communication instruc-
tions and overlapped execution of communication and com-
putation. A CCSIMD architecture exploits this available
concurrency by introducing communication autonomy in the
PEs, and by separating the control of the communication
and computation tasks. The main objective of CCSIMD
machine is to hide the communication latency as much as
possible by boosting communication instructions to overlap
their execution with other computation and communication
instructions. 

The CCSIMD paradigm does not limit the number of
message sets concurrently present in the network. The num-
ber of concurrent message sets in the network is bounded
only by the communication concurrency in the SIMD code,
and the implementation of the network. For example, con-
sider two consecutive communication instructions in the
code with corresponding message sets  and . In
SIMD execution, if  is injected into the network at time ,
then  can not be injected into the network until time

, where  is the time required to transmit message set
. In CCSIMD the scheduling of these message sets

depends on their inherent properties and their interaction
with other message sets, i.e. whether the message sets are
simple, complex, mutually exclusive, interfering, or conflict-
ing. Mutually exclusive message sets can be injected into the
network concurrently. Concurrent existence of interfering
message sets in the network is only possible if the network
can handle contention. Conflicting message sets coexisting
in the network must complete in order, to ensure data consis-
tency. 
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Figure 1. Decomposition of transpose into non-conflicting 
message sets. 
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4.1 CCSIMD Model

 

In this study we assume that there are two communica-
tion mechanisms: a 2-D toroid interconnection network and
a global network. Communication is allowed in the four
directions namely: North, East, West, and South (NEWS).
Communication in the NEWS directions is allowed to pro-
ceed simultaneously, provided that there are no structural
hazards. The interconnection network is used for communi-
cation resulting in simple message sets only, hence the com-
munication times for the message patterns are deterministic.
The number of links and channels per PE are a function of
the degree of desired communication concurrency in the
CCSIMD implementation. The global network is the only
entity that can handle the irregular message patterns. How-
ever decomposition of complex messages sets into simple
ones may be possible, and is encouraged for fast communi-
cation times. The global network communication times may
be non-deterministic due to contention in the network. This
is especially true for dynamically specified message pat-
terns. The amount of contention and variability in the com-
munication times is a function of the global network
architecture.

 

Communication Instruction Support

 

There are two types of communication instructions avail-
able for local and global communication. All communica-
tion is register to register with timing very similar to that of
the MasPar MP1/2 [3]. 

 

4.2 Issues in CCSIMD Design

 

The ability of CCSIMD to take advantage of communica-
tion concurrency leads to an increase in complexity of han-
dling communication instructions, and additional hardware
costs. Data dependencies must be analyzed to ensure con-
flict-free concurrent dispatch of communication and compu-
tation instructions. Furthermore, the combining of
communication instructions in the network require schedul-
ing and synchronization primitives, which may add to the
cost and/or timing of the system. 

 

Superscalar Dispatch

 

Concurrent execution of communication and computa-
tion instructions requires the controller to dispatch multiple
instructions simultaneously. The control unit must now track
the execution status and the state of the communication net-
work concurrently. This requires addition of some hardware
resources in the control unit to enable tracking of multiple
message sets in the network, and to determine their comple-
tion. The PEs must also separate the communication and
computation circuitry, resulting in the addition of buffer
resources. 

The dependency analysis can either be performed at com-
pile time (static) or during execution (dynamic). Static anal-
ysis can be used to insert synchronization instructions in the
code to ensure hazard-free handling of the instructions by
the hardware. While this approach requires some extra time
during compilation, it is relatively inexpensive in terms of
hardware resources and its effect on the cycle time.
Dynamic analysis requires dependency checking logic, but
may be able to schedule more efficiently than the static case. 

 

Multiple Message Sets

 

The decision to combine message sets in the network
depends on the available bandwidth in the network, number
of injection channels, and the register file bandwidth. The
combination of communication instructions may be per-
formed either in hardware or software or both. Combined
communication instructions also require that the member-
ship of the active PE set be updated to include the PEs corre-
sponding to the instructions, and that the PEs know which
communication to participate in. 

Message sets in the network may be deterministic or non-
deterministic. In the case of several deterministic message
sets active in the network, the control unit can determine the
completion of the message sets. However, some message
sets may be destined to PEs further away than others. As a
result, the control unit must track the status of each message
set to determine when it has reached the destination. This is
necessary to ensure timely ejection of message sets, and
relinquishment of the network resources to incorporate other
message sets. 

Synchronization techniques for complex message sets is
highly dependent on the routing and transmission mecha-
nisms invoked by the network for such communication. The
non- deterministic message sets require global synchroniza-
tion schemes, since the control unit can not determine the
completion time of the communication. Global OR has been
traditionally used to perform such synchronizations, for
example in the MasPar MP-2. For circuit oriented routing
schemes, tear-down may be performed by the message tail
flits, as in the CM-5 [10]. 

The ability to concurrently transmit multiple message
sets in the PEs requires extra buffers and communication
channels. The buffer requirements in a function of the num-
ber of dimensions and the maximum number of messages
being transmitted via a PE. The flexibility of the PE to com-
municate with multiple directions also affects the switching
complexity used for the communication buffers. The
increase in communication channel resources can result in
more wires and/or pins per PE. 

 

4.3 Proposed Architectures

 

The CCSIMD framework can be implemented to exploit
overlapped communication and computation concurrency,
inter-communication concurrency, or even both. Our objec-
tive is to study several implementations exploring the possi-
ble variations of the amount of support built in for
concurrent communication. In particular, we wish to study
three different configurations. 

• Type I: CCSIMD architecture built to exploit concur-
rency arising from the overlapped execution of com-
munication and computation. This architecture
requires a split control unit one each dedicated to han-
dle communication and general execution. The PEs
must be able to handle up to two instructions concur-
rently. 

• Type II: CCSIMD architecture built to exploit inter-
communication concurrency. While the control unit
for this architecture does not have to be superscalar, it
is required to efficiently dispatch consecutive commu-
nication instructions. As a result, the control unit is
more complex than the SIMD control unit, but contin-



 

ues to operate as a single entity. The functionality of
the PEs is the same as in a SIMD machine. 

• Type III: CCSIMD architecture built to exploit the
concurrency exploited in both Type I and II. Conse-
quently the functionality of the control unit and the
PEs is a combination of Type I and II architectures. 

Both Type II and III architectures can also be imple-
mented with varying degrees of support for concurrent com-
munication. In particular, the number of concurrent
communications in the network can range from one to four
for a network with NEWS connectivity. This selection of
configurations will help us understand the effect of exploit-
ing these types of concurrency on data parallel applications.
Implementation details of these architectures can be found
in [5].

 

4.4 Comparison of Hardware Resources

 

Detailed analysis shows that the area of the PEs, the dom-
inant component in a SIMD machine, needs to be increased
by 1.6% and 5.1% of the MasPar SIMD PE area for Type I
and Type II CCSIMD, respectively [5]. Thus, the additional
hardware resources required for the CCSIMD implementa-
tions are quite modest, and as the machine size increase, the
percentage increase in the system area will simply be
reduced to the percentage area increase in the PEs. 

 

5.0 Results

 

5.1 Comparison of Execution Times

 

The simulation data for the execution of the application
suite on SIMD and the three types of CCSIMD architectures
is presented graphically in Figure 2 along with the commu-
nication to computation ratios of the applications. As indi-
cated, the fifth bar in each group represents the
communication to computation ratio. A close look as this
graph indicates that CCSIMD is very effective with respect
to the overall execution times for those applications which
have high communication to computation ratios. Cannon

and reduce algorithms exhibit the highest amount of
improvement over SIMD with 46% and 40%, respectively. 

However, the primary goal of the CCSIMD architectures
is to hide communication latency. The communication
cycles listed for CCSIMD execution do not include those
cycles where both communication and computation were
executing concurrently. We consider these cycles to be hid-
den by computation, hence they are not considered a part of
the communication cycles. The reduction in communication
cycles ranges from a low of 9% to as high as 100%. Total
elimination of communication overhead implies that all the
communication was completely overlapped with computa-
tion, and as a result the communication latency is com-
pletely hidden. Figure 3 shows the effective communication
cycles required during the execution of these applications.
The bars represent the actual communication cycles normal-
ized to the SIMD case. Note that all the applications includ-
ing the ones which did not perform well in terms of
execution time, are able to hide a significant amount of com-
munication overhead under the CCSIMD execution. Also
note that typically Type II architectures are less effective at
reducing the communication overhead, however there may
be applications where the data dependencies do not allow
any overlapped communication and computation. In such
applications, the best results are obtained from Type II archi-
tectures. There are several applications in the suite which
have an added benefit from the use of Type II techniques in
addition to the Type I overlap technique, of which Cannon,
shear and fft clearly stand out. This implies that Type III
architecture may be a candidate of choice for certain appli-
cations. 

 

5.2 Communication Resource Utilization 

 

In this experiment we determine the usage of the commu-
nication resources in the PEs as a fraction of the total com-
munication cycles used. Figure 4 illustrates the number of
cycles spent communicating in one, two, three, or all four
directions. The data has been normalized to the number of
communication cycles spent communicating in a single
direction only. An inspection of this graph shows significant
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Figure 2. Comparison of simulated execution times for 
various applications on SIMD and CCSIMD architectures. 
Times are normalized to the SIMD execution time.
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Figure 3. Comparison of simulated communication times 
for various applications on SIMD and CCSIMD architec-
tures. Times are normalized to the SIMD execution time. 



 

utilization of concurrent communication in all four direc-
tions. While four of the applications in the suite use the com-
munication resources quite extensively, the remainder of the
applications require concurrent communication in at most
two directions. The performance improvement data pre-
sented in Figure 2 reveals that several of the applications
which exhibit large gains from CCSIMD only require con-
current communication in two directions. 

 

5.3 Effect of Channel Width on CCSIMD 

 

We vary the channel width and observe its effect on the
execution time of both SIMD and CCSIMD systems. We
expect to see the benefits of CCSIMD diminish as the
amount of communication time required on SIMD imple-
mentation goes down, i.e. as communication channel widths
increase, the performance gains from CCSIMD diminish.
Figure 5 shows the effect of varying communication channel
widths on the execution times of the applications executing
on the CCSIMD architecture. As expected, the best results
for the CCSIMD architecture are seen at the lower commu-
nication channel widths. This is due to the relatively longer
communication times at these widths. As the message size
increases, we anticipate that the CCSIMD results for the
larger channel widths will improve. CCSIMD architectures
may require up to two times the communication channel and
link resources. As a result a fair comparison of CCSIMD
execution times with SIMD would require comparing the
times for configurations which differ in their channel widths
by a factor of at least two. In Figure 6 we show the largest
channel width which yields lower performance in SIMD
than the three types of CCSIMD architectures with a 1-bit
communication channel. The channel widths differ among
the different implementations of CCSIMD, and of course,
from application to application. 

Type I and Type III CCSIMD architecture outperform
SIMD architectures with equivalent resources and for some
applications even SIMD architectures with channel widths
as high as 32 bits. This is primarily due to the overlapping of
communication latency with computation time. 

 

5.4 Effect of More Powerful PEs on CCSIMD

 

To examine the effects of employing powerful SIMD PE
on the benefits of the Type I and II CCSIMD architectures,
the trace for the application suite was regenerated based on
these assumptions. The execution times for these applica-
tions, normalized to the SIMD time, are shown in Figure 7.
A glance at this bar chart shows that indeed the Type II
architecture now provides better execution times than the
Type I architecture. Furthermore, the improvement in per-
formance obtained by Type II architectures surpasses the
best performance improvements for the some of the applica-
tions. Based on comparisons with the results with the origi-
nal PEs shown in Figure 2, we can make several other
observations. First we note that the shift in the balance of
communication and computation certainly affects the com-

Applications

0.0

1.0

2.0

3.0

4.0

5.0

Comm Res. Utilization for apps on the Type II CCSIMD Arch.
cw = 1, msg_size = 32 

Comm. in 1 dir Only
Concurrent Comm. in 2 dirs
Concurrent Comm. in 3 dirs
Concurrent Comm. in all 4 dirs

Figure 4. Concurrency in communication on the Type II 
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been normalized to the frequency of communication in a 
single direction only.
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munication to computation ratio of these applications with
the most dramatic change seen in the trst_d application
whose communication to computation ratio increased from
less than 10% to more than 70%. We also note that certain
applications which experienced a rather insignificant
improvement in performance previously, experience rela-
tively better improvements in performance. This is due to
the fact that communication latency with more powerful PEs
becomes a more significant fraction of the overall execution
time, and hiding communication latency provides more ben-
efit than before. 

Figure 8 shows the normalized communication times for
the application suite. It is apparent from the graph that the
communication latency hidden by Type II architecture is
much higher than Type I unlike the previous results shown
in Figure 3. This is due to the fact that the reduction in com-
putation times results in a smaller number which can be
overlapped with communication. Consequently, under these
new assumptions, it is more advantageous to overlap com-
munication with other communication. Of course, this is not
always the case as illustrated by the trst_d execution times in
Figure 7. Note that the execution time for the Type II imple-
mentation is slightly larger than that of Type I for the trst_d
application. This fact is also reflected by the higher commu-
nication times for the Type II implementation for trst_d
application in Figure 8. This application is unique in the
sense that it exhibits a large communication to computation
ratio, and yet the benefits obtained from CCSIMD are not
significant. This is primarily due to the fact that the benefits
obtained from CCSIMD are not just a function of the com-
munication to computation ratio, but also depend heavily on
the data dependencies within the applications. 

 

6.0 Conclusions

 

Our experimental result show that CCSIMD architectures
are certainly worth the modest investment in hardware
resources required to implement them. The results indicate
that for SIMD machines with relatively weak PEs, Type I
and Type III architectures prove to be most beneficial. Fur-

thermore, for our application suite the degree of communi-
cation concurrency necessary can be limited to two
directions at a time. To generalize these results however, fur-
ther experiments on other applications may be necessary.
For machines with more powerful PEs, Type II architectures
may prove to be more beneficial. 

The benefits of CCSIMD architectures continue to
increase as the problem size scales, which is apparent from
Cholesky factorization study. For most applications, the
CCSIMD architectures exhibit higher performance than
SIMD machines with twice the channel widths or higher.
This implies that the benefits of CCSIMD architecture can
not be achieved by increasing resources on SIMD machines;
instead a paradigm shift is necessary to gain the benefits
available with CCSIMD. 
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Figure 7. Comparison of simulated execution times for 
various applications on SIMD and CCSIMD architectures. 
Times are normalized to the SIMD execution time.
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Figure 8. Comparison of simulated communication times 
for various applications on SIMD and CCSIMD architec-
tures. Times are normalized to the SIMD execution time.
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