
ACEcardª: A High-Performance Architecture
for Run-Time Reconfiguration

Don Davis
TSI TelSys, Inc.

7100 Columbia Gateway Drive
Columbia, MD 21046
ddavis@tsi-telsys.com

Jonathan Harris
TSI TelSys, Inc.

7100 Columbia Gateway Drive
Columbia, MD 21046
jharris@tsi-telsys.com

Abstract

Recent FPGA architectures have shown an
increased emphasis on run-time reconfiguration, or the
ability to rapidly change the functionality of the FPGA
to sequentially accommodate large processing tasks. In
addition, partial reconfiguration allows for the
reconfiguration of a portion of the FPGA while the
remainder is running. These two features enable the
use of reconfigurable computing in high-performance
multi-threaded multi-user environments. However,
current board designs are not optimized to provide the
processing support required to maintain this run-time
environment which includes management of the
reconfigurable resources, interface to the host processor
and data movement.

In this paper, we will describe the architecture,
design and applicability of the ACEcard, a high
performance reconfigurable co-processor. The ACEcard
contains reconfigurable resources as well as an
embedded processor to manage the runtime
reconfiguration of those resources. We will provide
details of the architecture of the card as well as a
description of the current and future Java-based run-
time environment.

1. Introduction

Much of the current work on FPGA architectures for
reconfigurable computing focuses on run-time
reconfiguration [1, 2, 3]. Run-time reconfiguration is the
ability to rapidly change the functionality of an FPGA
during the execution of the processing task. This allows
an arbitrarily large algorithm that can be split up into a
sequential series of sub-algorithms (that can fit into the
available reconfigurable resources) to be processed by
loading the first sub-algorithm, processing the data, then
loading the second and so on. The performance achieved
using this approach is limited by the FPGA clock rate,
the FPGA reconfiguration rate and the ability to move

data into and out of the part and store intermediate
results.

Partial reconfiguration is the ability to change the
functions of a portion of the FPGA while the remainder
of the chip continues processing. When partial
reconfigurability is combined with rapid run-time
reconfiguration, a reconfigurable co-processor can
effectively be inserted into a high-performance multi-
threaded multi-user environment. In such an
environment, there will be a number of processing tasks
occurring simultaneously, each with a variety of resource
needs, including traditional processor resources, memory
resources and reconfigurable processor resources. The
management, control and coordination of these resources
is the function of the run-time environment.

2. The Run-Time Environment

The run-time environment provides support for
multiple users and multiple threads spread across a
heterogeneous environment of traditional processors and
reconfigurable processors. Most reconfigurable computing
devices do not include a dynamic run-time environment
and their FPGAs support only functional reconfiguration
(that is, they cannot be rapidly or partially reconfigured).
This means that all issues such as placement and routing
and data movement setup must be handled a priori.
This approach is adequate for a single, static embedded
task but does not scale well to server and multi-user
applications. A dynamic run-time environment does not
require the generation of configuration files off line before
the system is run. Instead, partial configuration files are
generated for relocatable Òhardware objects.Ó During run-
time these partial configuration files are dynamically
placed and routed together.

In the ACEcard co-processing environment, the host
processor makes a call (via an API) to the reconfigurable
co-processor. This high-level call includes, among other
things, the identity of the function to perform, the
location of the input data and the target location of the
output data. At this point, the host processor is free to
perform other tasks and make other calls to the

IPPS/SPDP 1998

 1063-7133/98
$10.00 (c) 1998 IEEE

reconfigurable co-processor. At some later time, the host
processor can retrieve the results of the computation.

The run-time environment executing on the
reconfigurable co-processor interprets these high level
calls and sets in motion the local processes necessary to
perform the task. First, the host processor call (method
invocation) is sent to the runtime environment. This
method invocation is associated with a specific hardware
object. A hardware object is low level functional
elements that provide discrete, self-contained
functionality. They may be adders, multipliers and
comparators or higher order functions like filters and
transforms. Hardware objects are pre-routed, relationally
placed and designed to conform to a standard interface
specification. The goal for designing these objects was
to minimize the amount of real-time routing performed
by the run-time environment. This provides two
advantages. First, each object is optimally prerouted and
relationally placed for the task it performs so fine grained
placement and routing is not necessary. Second by
designing to a standard inter-object interface
specification, objects can be interconnected with relative
ease.

Once a hardware object is called, the runtime
environment takes the relocatable hardware object and
places it in the reconfigurable resources. This consists of
finding a space in the reconfigurable resources large
enough to hold the hardware object. If there is no space
available, the run-time environment must decide whether
to wait for another object to finish or to swap out a
currently running process, saving its state and restoring
it when resources become available. This function is
analogous to virtual memory management in a
traditional microprocessor. The hardware object is then
routed (inter-object routing) if necessary. This placement
and inter-object routing is handled by the run-time
environment. After this is complete, the data is sent to
the objects, processed and sent back to the host process.
The data movement functions are also handled by the
run-time environment.

3. The ACEcard

The maintenance of the run-time environment is a
complex task. It must perform a number of intensive
functions in real-time. If the placement, routing or data
movement functions are not performed quickly, any
performance gains realized by the reconfigurable resources
could be lost by the overhead of the run-time
environment. To address these concerns, TSI TelSys
designed and built a high-performance PCI-based co-
processor card which includes run-time reconfigurable
FPGAs and an embedded processor - the ACEcard.

The choice of FPGA architecture was a fundamental
driver of the card design. We chose Xilinx XC6264
Reconfigurable Processing Unit (RPU) parts for a number
of reasons. The XC6264 parts are dynamically run-time
reconfigurable and partially reconfigurable. We saw this
as critical to the proper implementation of a
reconfigurable co-processor architecture. The
reconfiguration time is much faster than other
commercially available parts from Xilinx, Altera and
others. Fast reconfiguration is an important feature in a
dynamic run-time environment. If reconfiguration times
are large compared to reconfigurable processing times, no
performance gains will be realized.

In addition, the programming of the chip is a public
specification allowing us to develop our own real-time
place and route routines in a very straightforward manner.
This public specification also allows access to the current
operating state of the entire chip. This is a necessary
feature to implement hardware object swapping; that is,
the ability to stop the processing of a current object, save
its state and replace it with another object that is a higher
priority. Other advantageous features of the XC6264
RPUs include: a 32 bit FastMAPª interface for direct
microprocessor access to all chip resources and a large
array of available gates (up to 100,000) including up to
16K registers. The ACEcard includes two XC6264
chips with 41 configurable interconnects between them.
This yields a total of 200,000 gates with up to 32K
registers.

Figure 1: ACEcard

PLX9080 microSPARC
IIep™

100 MHz

XC6264 XC6264

RC Local Bus
(10 - 33 MHz)

H
o

st
 P

C
I B

u
s

SRAM
128k x 32

SRAM
128k x 32

Local PCI Bus
(33 MHz)PLX9080 DRAM DIMM

8 to 64 Mbytes

64 bits

PCI Mezzanine Card
(PMC)

R
ea

r
P

an
el

 IO

Hardware IO

Flash

Flash Memory Snoop/Programming Bus

ACEcard™

Figure 2: ACEcard Architecture

Another important design factor was support for the
run-time environment. This includes both a computing
resource on which to execute the environment as well as
a means to provide high speed communication and data
movement between the host and co-processors. To
handle these tasks, we included a high performance
embedded processor on the board. We chose a 100 MHz
microSPARC IIep processor. It is based on the SPARC
architecture specification version 8 and includes a floating
point unit, memory management unit, 16 Kbyte
instruction cache, 8 Kbyte data cache, DRAM controller
and a 33 MHz PCI interface. We also included up to 64
MBytes of DRAM and 1 Mbyte of flash memory. Some
performance specifications are given in the table below.

Benchmark Performance
SPECint92 65.3
SPECfp92 55.6
Dhrystone MIPS 117.7
Memory Read 152 MBytes/sec
Memory Write 177 MBytes/sec
DVMA (memory to PCI) 45 MBytes/sec
DVMA (PCI to memory) 70 MBytes/sec

Table 1: microSPARC IIep Performance

Coupled with this embedded processor are high
performance PCI bridge chips which provide DMA
channels for moving data at up to the full PCI bus
bandwidth (33 MHz by 32 bits - 1.2 Gbps). The
architecture of the ACEcard is shown in Figure 2. All
data paths and memory accesses (except for the flash) on
the ACE card are 32 bits wide and can run at 33 MHz.
This is equal to the bandwidth of the host PCI bus and
allows us full bandwidth performance across the entire
system.

In addition to the RPUs and the embedded
processor, we included 1 Mbyte of synchronous SRAM
attached directly to the RPUs. This memory operates at
33 MHz with zero wait states. It is arranged as two
banks of memory 128k by 32 bits attached to each of the
RPUs. There is a crossbar switch between the memory
and the RPUs to allow an RPU to access both banks of
memory.

The last element on the ACEcard is an interface to a
PCI Mezzanine Card (PMC). This interface is
CMC/PMC compliant (IEEE P1386.1) and is a standard
form-factor that supports the PCI bus electrical interface.
It is used on the ACEcard to provide interface flexibility.
PMC cards are available which provide network and
peripheral interfaces (Ethernet, ATM, FDDI, SCSI,
others) and specialized interfaces (TTL, RS-422, serial
ECL). As part of this interface there is a hardware

interface bus for direct connection to the RPUs. This
hardware interface bus includes 42 bits of reconfigurable
input/output signals as well as a serial clock and data
interface.

The combination of dynamic run-time/partially
reconfigurable RPUs, a high performance embedded
processor and supporting memory coupled with interface
flexibility and an architecture optimized for system level
performance provides a powerful platform for
reconfigurable co-processing applications.

4. ACEruntimeª - A Java-based Runtime
Environment

Current work is focused on implementing a robust
run-time environment for reconfigurable co-processors.
Two system platforms have been targeted. The first is a
Sun UltraAX motherboard that is based on a 250 MHz
UltraSPARC processor running the Solaris 2.x
Operating System. The second system platform is a
Windows NT 4.0 platform with a 266 MHz Pentium
Pro processor. Drivers have been written for both
platforms while the run-time environment was developed
in the Java programming language. This has allowed us
to easily support both system platforms due to the high
degree of portability inherent in Java code.

ACEruntime, a Java-based run-time environment
abstracts the most basic construct in the RPU, a cell, as
an object and the functionality and routing of that cell are
manipulated via method calls. For the instantiation of
hardware objects, the run-time environment fetches the
appropriate relocatable hardware object and modifies the
file to place it at a physical location in the part. Since
the relocatable hardware object is relationally place and
routed, it must be assigned an actual location before
instantiation. After the hardware object is instantiated,
any additional routing necessary to connect it to other
objects is performed by the run-time environment. If
necessary, currently executing hardware objects may first
be stopped while their state is copied to temporary
storage in order to make room for the new object. The
appropriate data is then sent to the object via the high-
speed DMA channels on the ACEcard. These DMAs are
set up, controlled and monitored by the run-time
environment. The resulting data is sent back to the host
via a similar DMA process.

For an application level programmer, ACEruntime
has defined a Java class library that contains some basic
reconfigurable processing elements. A programmer can
write Java code using objects from this class library. No
special consideration need be given to the fact that the
class library is referencing reconfigurable hardware.
Method calls are identical to standard software method
calls. When the code is run, all aspects of handling the
reconfigurable resources are performed by the run-time

environment with no intervention from the user
necessary.

5. The Future

TSI TelSys, Inc. will make many improvements to
the basic architecture described here based on the
evolution of the underlying technologies. FPGA chip
architectures will evolve and provide more gates with
faster reconfiguration. In addition, we expect to see
dedicated support for run-time environments appearing
on the FPGA chips as well. At first this may be in the
form of hybrid chips that contain both a traditional
processor and reconfigurable resources. There are a
number of research efforts in this area already. [4]
Support for atomic hardware objects could also be built
into the FPGA providing a framework in which to plug-
in the objects. Another optimization is to provide a
closer coupling between the reconfigurable processor and
the host processor, perhaps even on the same chip, and
include the run-time environment for reconfigurable in
the host operating system.

6. Conclusion

The ACEcard combined with ACEruntime provide a
high-performance run-time reconfigurable architecture and
Java-based run-time environment for managing the
reconfigurable resources. This ACEcard architecture was
designed from the ground up to provide the resources
necessary to effectively implement a run-time
environment for reconfigurable computing. It features a
powerful embedded processor, fast DMA channels for
data movement and advanced dynamic run-time
reconfiguration architected to provide maximum system-
level performance.

References

[1] W. Luk and N. Shirazi. Modelling and Optimising
Run-Time Reconfigurable Systems. Proceedings IEEE
Symposium on FPGAs for Custom Computing
Machines, pp. 167-176, April 1996.

[2] H. Schmit. Incremental Reconfiguration for Pipelined
Applications. Proceedings IEEE Symposium on FPGAs
for Custom Computing Machines, pp 47-55, April 1997.

[3] J. Burns, A. Donlin, J. Hogg, S. Singh, M. de Wit.
A Dynamic Reconfiguration Run-Time System.
Proceedings IEEE Symposium on FPGAs for Custom
Computing Machines, pp. 66-75, April 1997.

[4] J. R. Hauser and J. Wawrzynek. Garp: A MIPS
Processor with a Reconfigurable Coprocessor.
Proceedings IEEE Symposium on FPGAs for Custom
Computing Machines, pp. 12-28, April 1997.

