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Abstract

This paper describes the functionality of ViC*, a com-
piler for a variant of the data-parallel language C* with
support for out-of-core data. The compiler translates C*
programs with shapes declaredoutofcore , which de-
scribe parallel data stored on disk. The compiler output is
a SPMD-style program in standard C with I/O and library
calls added to efficiently access out-of-core parallel data.
The ViC* compiler also applies several program transfor-
mations to improve out-of-core data access.

Keywords: compilers, parallel I/O, C*, parallel disk sys-
tems, virtual memory.

1. Introduction

Although parallel computers were originally designed with
processing speed in mind, they have proven equally valu-
able for their ability to solve problems with very large data
requirements. Indeed, parallel computers have opened up a
new range of possibilities for scientific computing.

As the capacity of parallel computers has increased,
however, so have the appetites of users. Throughout the
history of electronic computing, no matter how big and fast
the top machines have been, there have always been appli-
cations that needed them to be bigger and faster, and it re-
mains true today.

Over thirty years ago, computer architects devised vir-
tual memory to solve this problem for sequential machines
[16]. Today’s parallel machines typically run traditional
sequential virtual memory on the individual nodes. This
approach frees the programmer from coding explicit I/O
calls, but because it fails to take advantage of aggregate
data-parallel operations, it also yields suboptimal I/O per-
formance inout-of-coreproblems, i.e., those whose data re-
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quirements exceed the size of main memory.

There are multiple paths to reducing I/O times in out-of-
core computations. One way is to make each disk access
faster; this approach is beyond the scope of the this paper
and the ViC* project. Another way is to reduce the number
of disk accesses. ViC* is based on this approach.

We know of two ways to reduce the number of disk ac-
cesses in an out-of-core data-parallel computation, and the
ViC* project uses them both. One is to have the compiler
transform the program into one that eliminates many of the
disk accesses. The resulting program is essentially the same
as the original, but improved. This approach is the focus of
this paper.

The other way to reduce the number of disk accesses is
to design algorithms that explicitly work with out-of-core
data on parallel disks. Since the introduction of the Parallel
Disk Model (PDM) by Vitter and Shriver in 1990 [23], there
have been significant technical advances on how to carefully
plan parallel disk accesses for common data-parallel opera-
tions and algorithms [1, 2, 3, 4, 6, 8, 9, 12, 14, 13, 17, 20,
21, 24, 25, 23]. The performance improvements gained by
using these methods can be tremendous, and their impacts
increase with the problem size. They require a degree of
coordination among the processors and disks that unrelated
virtual-memory systems on separate nodes cannot provide.

The ViC* approach of built-in virtual-memory support
for data-parallel programming allows the memory require-
ments of application programs to exceed the available mem-
ory size without increasing software development time or
software complexity. The ViC* compiler transforms the
source program to remove many of the parallel disk ac-
cesses, and the ViC* runtime system invokes efficient PDM
algorithms to perform specific tasks. Programmers do not
need specialized knowledge of PDM algorithms in order to
avoid huge performance penalties.

To be more specific, the ViC* system is based on using
a data-parallel language, in particular C* [22]. The ViC*
(Vi rtual-memory C*) compiler transforms a C* program
with parallel variables so large that they must reside on disk
into a C program with I/O and library calls to access out-
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of-core data on a parallel disk system. A ViC* source pro-
gram does not declare individual variables as disk-resident,
or out-of-core; instead, any C* shape may be declared to
beoutofcore , which means that all parallel variables of
this shape are out-of-core. The I/O calls added by ViC* read
and write sections of out-of-core parallel variables. Before
emitting the C code, however, the compiler transforms the
program to eliminate many of the I/O calls. The library
calls added by ViC* are typically for operations requiring
communication in out-of-core parallel variables, e.g., re-
ductions, gets, and sends.

This paper focuses on the ViC* compiler, rather than on
the library calls. The library calls are where the efficient
PDM algorithms are invoked, and so the library is an im-
portant part of the full ViC* system. The compiler, there-
fore, yields two benefits. First, the transformations it ap-
plies directly reduce the number of I/O calls. Second, it
makes calls, and enables the programmer to make calls, to
the ViC* library, which further reduces the I/O costs.

One principle of this project is to exploit existing lan-
guages and software as much as possible. Rather than de-
sign a new language, ViC* implements an existing lan-
guage, C*, with minor extensions. It produces C code,
which is processed by host machine compilers.

Why choose C* as a base language? We want an estab-
lished data-parallel language that is not High-Performance
Fortran (HPF). We are interested in data-parallelism be-
cause it has proven to be a valuable parallel-programming
paradigm and because recent I/O-optimal algorithms fit
nicely into it. C* presents different implementation chal-
lenges from HPF. In particular, HPF uses arrays, an ex-
isting language feature, for parallelism. On the other hand,
C* uses shapes, a separate feature not found in sequential C.
HPF specifies data distribution at compile time, whereas C*
(and ViC*) evaluate shapes at runtime. C* also faces issues
of pointer aliasing not permitted in HPF. Many of the issues
raised in ViC* implementation are not particular to C*, but
are common to compiled data-parallel languages. For ex-
ample, the languageF�� [15] bears many similarities to
C*. Finally, although many people think of C* solely as a
bygone product of Thinking Machines Corporation, there is
an active project under the direction of Phil Hatcher at the
University of New Hampshire that has produced a C* com-
piler and runtime system for a distributed-memory model
(see [19] and http://www.cs.unh.edu/pjh/cstar/cstar.html).

The remainder of this paper is organized as follows. Sec-
tion 2 describes virtual memory and its implementation on
parallel disk systems. Section 3 presents a brief overview
of the C* language and the ViC* extensions. Section 4 dis-
cusses program transformations to improve access to out-
of-core data. Section 5 describes the runtime interface used
to access out-of-core data. Section 6 presents performance
measurements. We conclude in Section 7. The full paper
[7] describes C* in greater detail and provides details that

are omitted here due to space.

2. Virtual Memory

As described by Denning [16] in 1970,virtual memory
presents the programmer “theillusion that he has a very
large main memory at his disposal, even though the com-
puter actually has a relatively small main memory.” De-
mand paging is a common implementation of virtual mem-
ory, but, as we are about to see, for large data sets there are
more efficient alternatives.

Demand paging

Demand pagingis a runtime-only mechanism, implemented
in the operating system with architectural support and re-
quiring no language or compiler support. Pages are loaded
into main memory on demand, i.e., when they are ac-
cessed. The program cannot proceed until the data be-
come available. Demand paging services page faults one
at a time, based on accesses in a sequential program. It is
well suited to a multiprogramming environment that em-
phasizes throughput rather than latency, since when one
process blocks while waiting for page-fault service, another
process can run.

Traditional demand paging has relatively poor perfor-
mance when several passes are made over the same out-
of-core data. A typical demand pager replaces the least re-
cently used page (or at least a not very recently used page)
with new pages. By the time the last page of out-of-core
data is loaded, the first page has been replaced. The result
is that each page must be reloaded for each pass through the
data.

Just as some optimizing compilers do for in-core data
that does not fit in cache, an out-of-core computation can be
restructured to combine multiple passes. Even with restruc-
turing to combine multiple passes, with demand paging the
speed of the remaining passes is limited by access time to
the swap area.

The swap area is typically a partition of a single disk.
The access time can be reduced by using a parallel disk
system to increase the data transfer rate. Even with the
highly unusual configuration of a parallel disk system for
swap space, only the transfer rate improves. I/O latency for
demand paging does not improve.

I/O latency can be hidden in many out-of-core com-
putations by prefetching and post-writing (see [11] for an
example). How good would a demand paging system
with a restructuring compiler, parallel disk system, and
prefetching/post-writing be? If all computations made se-
quential passes over the data, it would be quite good.

However, some asymptotically optimal out-of-core algo-
rithms for the Parallel Disk Model (e.g., those for sorting
[4, 20, 21, 23], structured permutations [13, 24], and FFTs
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[9, 12, 14]) do not access out-of-core data in a simple, se-
quential fashion. They read and write whole disk blocks,
but the blocks may be scattered throughout the parallel disk
system. These algorithms require the ability to indepen-
dently access individual disks. Without an explicit I/O in-
terface, they cannot take full advantage of a parallel disk
system. To our knowledge, no demand paging system pro-
vides such control.

The principal advantage of demand paging is trans-
parency, not performance. The program takes no part in the
managing the virtual memory; indeed it is typically unable
to determine that there is virtual memory. For small work-
ing sets, demand paging delivers adequate performance.

Virtual memory with ViC*

To support large out-of-core working sets, ViC* modifies
the program to explicitly manage its own virtual mem-
ory. This is accomplished with minimal changes in the
program source, however, requiring only the addition of
outofcore specifications.

ViC* implements virtual memory for parallel data only;
traditional virtual memory mechanisms are adequate to han-
dle instructions and scalar data. Our approach is based on
a combination of language features, compiler, and runtime
support. We do not require, but can take advantage of, oper-
ating system and architectural support for parallel disk sys-
tems. Our assumption is that parallel data sets are large
enough to warrant special treatment in software. Each ac-
cess deals with a large amount of data. In fact, the trans-
fer size of a ViC* access is typically much larger than in a
traditional demand paging system. Each ViC* access gets
at least as much data per disk as in demand paging (if not
more), and each ViC* access may be to multiple disks. Con-
sequently, the access cost in ViC* is spread over many more
elements than in traditional demand paging.

In this paper we concentrate on data-parallel operations,
where the access pattern is the same for all elements. For
such code the compiler is able to exploit its knowledge of
program structure to reorder accesses, reducing the number
of page transfers to and from main memory.

As mentioned previously, ViC* also includes a library of
optimal out-of-core algorithms for permutations and other
data movement. These algorithms take advantage of an in-
dependent I/O interface to a parallel disk system. Such al-
gorithms offer large speedups over conventional in-core al-
gorithms under demand paging. In one case, an explicit
out-of-core FFT algorithm was over 144 times faster than
a demand-paged version of the traditional in-core Cooley-
Tukey method [12].

3. Background concepts and overview of ViC*

This section introduces the parallel programming model
and the language features of C* and ViC* that implement
it. More information about the C* language appears in [22].

C*, and hence ViC*, supportsdata-parallel program-
ming, in which a sequential program operates on parallel
data distributed among a set ofpositions. A virtual pro-
cessoroperates on parallel data at each position. The un-
derlying computer multiplexes a set of physical processors
among the virtual processors. Scalar data remains global
to all virtual processors. This model of programming is
also known as SPMD, for Single Program, Multiple Data, a
more loosely synchronized software implementation of the
SIMD (Single Instruction, Multiple Data) model.

Each parallel variable in C* has a rectangularshape,
which describes the logical structure of positions. At any
point in the program, acurrent shapeis in force. Elemen-
tal parallel operations operate elementwise on data of the
current shape. Awith statement selects the current shape,
which is denoted by the reserved wordcurrent .

All C* operations are controlled by acontext, which de-
scribes theactive positionsin parallel variables of the cur-
rent shape—those whose virtual processors execute parallel
operations. Awhere statement narrows the context, like
a parallelif statement, by selecting as active a subset of
the active positions within the shape. Aneverywhere
statement makes all positions active. Exiting awhere or
everywhere statement restores the context in force be-
fore the statement. Functions inherit the current context and
the current shape from their caller.

Parallelcommunicationtransfers parallel data among the
virtual processors. There are several forms of parallel com-
munication. The only one used in this paper isreduction,
which combines elements of a parallel variable into a scalar
result, such as summing the elements.

C* is based on a distributed-memory model of parallel
data, with data spread across separate address spaces. In
contrast to C arrays, the address of a position in a C* par-
allel variable is not denotable, and hence individual posi-
tions of parallel variables cannot be addressed with pointers.
All communication among positions takes place through the
explicit communication operations. ViC* implements vir-
tual memory for parallel data by exploiting the distributed-
memory model to place out-of-core data on disks and load
it into memory as needed.

An Example

The sample ViC* program in Figure 1 illustrates the use of
outofcore data. The example computes a partial har-
monic series for the firstN � 1 terms, or(1=k) for k =
1; 2; : : : ; N � 1, passes its address to an external function,
and sums the result. Although the example does not nec-
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essarily demonstrate the most efficient means of computing
this series, it illustrates a number of issues and optimiza-
tions for processing out-of-core data.

The functionharmonize() declares an out-of-core
shapeseries with 230 positions stored on disk. The
with statement establishesseries as the current shape.
Sinceseries is a new shape, the associated context is
everywhere .

An index variable,k , is initialized with thepcoord()
parallel intrinsic function. The call topcoord() returns
the index set along a dimension (in this case, 0) of the cur-
rent shape. Here it returns0 in position 0,1 in position 1,
through230 � 1 in the last position. Thewhere statement
narrows the context to positions 1 through230 � 1. The
parallel variableharm is assigned the reciprocals ofk , i.e.,
1=i in each positioni. Having narrowed the context avoids
a division by zero in this expression.

The example calls an external function,filter() ,
with a pointer toharm . Functionfilter() also inherits
the current shape and context. Such an external call limits
the scope of optimizations as described below. On return,
a sum-reduction, denoted by the overloaded+= operator in
C*, returns the sum of the resulting elements ofharm .

4. Loop Transformations

In this section we discuss transformations of parallel
loops—loop fusion, rematerialization and dead store elim-
ination, and scalarization—that improve their performance
on out-of-core data. We illustrate their effect on the example
from Figure 1 and compare the page I/O counts for parallel
data.

In Section 3 we presented an example in the C* lan-
guage. In this section we describe program transformations
in the compiler’s intermediate language, using its constructs
for parallel data access. In a Section 5 we will discuss the
compiler’s C language output.

The compiler’sPASSconstruct describes a parallel loop
over each position, much like Fortran’sFOREACHloop.
Within a PASS loop, theELT construct selects the ele-
ment at the current position. ThePCOORD() construct
evaluates thepcoord instrinsic at current position. The
global pointerCONTEXTpoints to the current context; a
null pointer indicates aneverywhere context.

Figure 2 shows a C code schema that implements
the statements inside thewith statement of function
harmonize() . The PASSconstructs loop for each po-
sition. Inside somePASSloops,if statement restricts exe-
cution to the active positions.

The second loop computes thewhere context into
an auxiliary parallel variable,where_1 , which is used
in subsequent loops. The globalCONTEXTis stacked
in context_0 and popped at the end of thewhere

loop k where 1 harm total
1 1024K 1024K
2 1024K 128K 1152K
3 1024K 128K 1024K 2176K
4 128K 1024K 1152K

program 3072K 384K 2048K 5504K

Table 1. Page I/O counts for the program
schema in Figure 2 with 8-KB pages.

statement; since functions inherit context when called,
filter() will also referenceCONTEXT.

In the fourth loop each processor accumulates a sum in
the variablered_2 . Thesum_reduce() construct com-
bines the partial sums from each processor and distributes
the result to all processors.

Consider the behavior of the schema in Figure 2 with
large data sets in a traditional sequential demand-paged en-
vironment. EachPASS loop will typically page in all of
its parallel data operands and write back all parallel results.
Consider a single-processor system, such as a DEC Alpha
running OSF/1, where an 8-KB page holds 1Kdouble s or
long s, or 8K booleans (implemented as bytes). We con-
sider only paging due to parallel data, and we assume that
the current shape is large enough that no pages are still in
memory by the time they are referenced in a subsequent
pass. Table 1 shows the expected number of page transfers
for parallel variables in each each loop. The total page traf-
fic for this version of the program is 5504K pages. Page
prefetching can be used to reduce the latency but does not
affect this total I/O count.

Loop Fusion

Loop fusionis a transformation which combines adjacent
loops with similar bounds where data dependencies in the
loop bodies permit. Loop fusion reduces loop overhead and,
more significantly for out-of-core data, improves data local-
ity when the loops access the same data.

A sophisticated C* compiler [19] would fuse these loops,
as illustrated in Figure 3. The first three loops of Figure 2
have been fused into a singlePASS. The remaining loop
cannot be fused because of data dependencies: the sum de-
pends on any modifications to elements ofharm in the call
to filter() .

In Figure 3, parallel data is reused within the fused loop.
All references tok are in the first loop, and so this data
is traversed exactly once. Variablewhere_1 is traversed
twice. Table 2 shows the resulting page I/O counts.
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void filter(double:current *envelope); /* external computation */

void harmonize() {
const N = 1 << 30; /* N == 2 ** 30 */
outofcore shape [N]series; /* series of terms */
with (series) { /* set current shape */

long int k:current = pcoord(0); /* index array */
where (k > 0) { /* avoid computing 1/0 */

double harm:current = 1.0 / k; /* 1/k (0 < k < N) */
filter(&harm); /* process */
return += harm; /* sum result */

}
}

}

Figure 1. A sample ViC* program to compute in parallel the terms 1=k for 0 < k < 230 out of core, call
an external function, and return their sum.

bool (*context_0): current = CONTEXT; /* current context */
bool where_1: current; /* context value */
double red_2 = 0; /* sum accumulator */

PASS { /* LOOP 1 */
if (!context_0 || ELT(*context_0)) /* inherited context */

ELT(k) = PCOORD(0); /* set k */
}

PASS { /* LOOP 2 */
ELT(where_1) = (!context_0 || ELT(*context_0)) && (ELT(k) > 0);

}

CONTEXT = &where_1; /* push context */

PASS { /* LOOP 3 */
if (ELT(where_1)) /* in new context */

ELT(harm) = 1.0 / ELT(k); /* set envelope */
}

filter(&harm); /* call */

PASS { /* LOOP 4 */
if (ELT(where_1)) /* in new context */

red_2 += ELT(harm); /* sum envelope */
}

red_2 = sum_reduce(red_2); /* combine sum */

CONTEXT = context_0; /* pop context */

return red_2;

Figure 2. C schema for loops in harmonize() in Figure 1. The PASS construct iterates over all
positions, and ELT evaluates the current position. The variable context 0 stacks the initial context.
Temporary variables where 1 and red 2 store the context and summation, respectively.

Rematerialization

Rematerialization[5] is a transformation that recomputes
a variable instead of using its stored value—the inverse of
common subexpression elimination. In other compilers, re-
materialization typically reduces the number of memory ac-
cesses. ViC* uses rematerialization to reduce the number of

out-of-core reads at the cost of additional computation. In
most current architectures, the cost of disk I/O greatly out-
weighs the cost of computation. Figure 4 shows the effect
of rematerialization on the example.

Rematerialization can be applied when a variable’s value
is computable from in-core data. Parallel values computed
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bool (*context_0): current = CONTEXT; /* inherited context */
bool where_1: current; /* context value */
double red_2 = 0; /* sum accumulator */

PASS { /* LOOP 1’ */
if (!context_0 || ELT(*context_0)) /* inherited context */

ELT(k) = PCOORD(0); /* set k */
ELT(where_1) = (!context_0 || ELT(*context_0)) && (ELT(k) > 0);
if (ELT(where_1)) { /* in new context */

ELT(harm) = 1.0 / ELT(k); /* set envelope */
}

}

CONTEXT = &where_1; /* push context */

filter(&harm); /* call */

PASS { /* LOOP 2’ */
if (ELT(where_1)) /* in new context */

red_2 += ELT(harm); /* sum envelope */
}

red_2 = sum_reduce(red_2); /* combine sum */

CONTEXT = context_0; /* pop context */

return red_2;

Figure 3. C schema for harmonize() in Figure 1 with the first four loops of Figure 2 fused into a
single loop.

bool (*context_0): current = CONTEXT; /* inherited context */
bool where_1: current; /* context value */
double red_2 = 0; /* sum accumulator */

PASS { /* LOOP 1’’ */
if (!context_0 || ELT(*context_0)) /* inherited context */

ELT(k) = PCOORD(0); /* set k */
ELT(where_1) = (!context_0 || ELT(*context_0)) && (ELT(k) > 0);
if (ELT(where_1)) { /* in new context */

ELT(harm) = 1.0 / ELT(k); /* set envelope */
}

}

CONTEXT = &where_1; /* push context */

filter(&harm); /* call */

PASS { /* LOOP 2’’ */
if (!context_0 || ELT(*context_0)) /* inherited context */

ELT(k) = PCOORD(0); /* rematerialize new context */
ELT(where_1) = (!context_0 || ELT(*context_0)) && (ELT(k) > 0);
if (ELT(where_1)) {

red_2 += ELT(harm); /* sum envelope */
}

}

red_2 = sum_reduce(red_2); /* combine sum */

CONTEXT = context_0; /* pop context */

return red_2;

Figure 4. Rematerialization. The values of k and where 1 are recomputed rather than being read from
storage.
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loop k where 1 harm total
1
0 1024K 128K 1024K 2176K

2
0 128K 1024K 1152K

program 1024K 256K 2048K 3328K

Table 2. Page I/O counts for the program
schema in Figure 3 after loop fusion.

loop k where 1 harm total
1
00 1024K 128K 1024K 2176K
2
00 1024K 1024K

program 1024K 128K 2048K 3200K

Table 3. Page I/O counts for the program
schema in Figure 4 after rematerialization.

loop k where 1 harm total
1
000 128K 1024K 1152K
2
000 1024K 1024K

program 128K 1024K 2176K

Table 4. Page I/O counts for the program
schema in Figure 4 after dead store elimina-
tion.

from scalars and thepcoord() function are suitable for
rematerialization, as are variables computed from other val-
ues already available in a loop. A context which may be
everywhere , such as the one established by thewith
statement, is also a good candidate for rematerialization,
since it may require no data. In the second loop of Figure 4
the context value,where_1 is rematerialized from the ini-
tial context and the expressionspcoord(0) andk > 0 .
The resulting page I/O counts are shown in Table 3. Total
page traffic is reduced to 3200K pages.

Dead Store Elimination

Dead store elimination is applied after rematerialization has
eliminated references to stored parallel variables. Because
the local parallel variablek is rematerialized in the second
loop, its value is never read from disk. Consequently, the
assignment tok is dead, and so its computed vales need not
be written to disk. On the other hand, the current context in
where_1 is implicitly passed tofilter() , so it must be
written.

Determining that a parallel assignment is dead requires
dataflow analysis of variables shared between loops. Dead
store elimination does not alter the loop structure, but it
eliminates the need to write back the out-of-core data. The
resulting page I/O counts are shown in Table 4. The total

page I/O count has been reduced to less than half the origi-
nal count.

Scalarization

Scalarizationreplaces parallel variables with scalars. It ap-
plies to intermediate parallel variables that are used only
within a loop and neither read nor written to storage. Scalar-
ization reduces the overhead of selecting a position as well
as the memory requirements in a loop. Scalarization is ap-
plied after rematerialization has eliminated reads and dead
store elimination has eliminated writes.

In Figure 5, this transformation is applied to the local
variablek . In the secondPASS, the current context is also
replaced with a scalar. Onlyharm andwhere_1 in the
first loop andharm in the second loop remain as out-of-
core variables. These are exactly the variables visible to the
functionfilter() .

Scalarization requires dataflow analysis of variables
shared within a loop. Although scalarization does not af-
fect the page I/O requirements, it improves in-core access
within the PASSloops, an important consideration for in-
core shapes.

Summary

For this example, the loop transformations described above
reduce page I/O counts by 60%. Experienced program-
mers often apply such optimizations, particularly when I/O
is explicit. As can be seen by comparing Figures 1 and 5,
the transformations tend to obscure the program structure.
Adding I/O calls results in a program more like Figure 6.
This sequence of transformations is the sort of program-
ming process that is better left to a compiler such as ViC*.

5. Runtime Support

In this section, we describe the ViC* runtime I/O interface
for parallel data loops. After the loops have been restruc-
tured, the ViC* compiler inserts I/O calls and expands par-
allel variable references.

Figure 6 shows the final C code ofharmonize() after
applying all the transformations in Section 4. EachPASS
loop is expanded into an outersectioningloop and an inner
in-core vector loop. References to parallel variables are re-
placed by references to in-core strips. Other calls to runtime
functions set up I/O and manage loop iteration.

Each loop begins with a call toACCESS_DATA() for
each parallel variable used in the loop. This function opens
file descriptors and allocates in-core buffers for out-of-core
data. Access is given as read-only (’R’ ), write-only (’W’ ),
modify (read and write,’M’ ), or read-context (’C’ ). The
ACCESS_DATA()function detects aliasing among parallel
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bool (*context_0): current = CONTEXT; /* inherited context */
bool where_1: current; /* context value */
double red_2 = 0; /* sum accumulator */

PASS { /* LOOP 1’’’ */
long k_3; /* scalar ELT(k) */
if (!context_0 || ELT(*context_0)) /* inherited context */

k_3 = PCOORD(0); /* set k */
ELT(where_1) = (!context_0 || ELT(*context_0)) && (k_3 > 0);
if (ELT(where_1)) { /* in new context */

ELT(harm) = 1.0 / k_3; /* set envelope */
}

}

CONTEXT = &where_1; /* push context */

filter(&harm); /* call */

PASS { /* LOOP 2’’’ */
long k_4; /* scalar ELT(k) */
bool where_5; /* scalar ELT(where_1) */
if (!context_0 || ELT(*context_0)) /* inherited context */

k_4 = PCOORD(0); /* rematerialize new context */
where_5 = (!context_0 || ELT(*context_0)) && (k_4 > 0);
if (where_5) {

red_2 += ELT(harm); /* sum envelope */
}

}

red_2 = sum_reduce(red_2); /* combine sum */

CONTEXT = context_0; /* pop context */

return red_2;

Figure 5. Scalarization. Parallel variable k and, in the second loop, the current context are replaced
by scalar temporaries.

data references and combines the references. It also verifies
that the parallel data has the current shape.

At first glance, it might appear that reading a context is
no different than reading any other parallelbool . It turns
out that there are two reasons to treat the context specially.
First, it provides a simple programming check. Recall that
the pointer to a context may be null, which would indicate
an everywhere context. In such a case, no read would
occur. For all other out-of-core parallel data, the pointer
must be non-null; an access type other than read-context
with a null data pointer triggers a runtime error. (The ori-
gin of such an error would be the ViC* compiler rather than
the programmer.) Second, treating the context specially en-
ables a runtime optimization. Again supposing that the con-
text pointer is null, consider what happens when we per-
form write-only access on some other out-of-core parallel
variablea. Because the context iseverywhere , there
is no need to first reada; every position will be written.
On the other hand, when the context is not known to be
everywhere , we must first reada in order to maintain
values in the inactive positions. WhenACCESS_DATA()
finds that the context iseverywhere , it can automatically

optimize access to write-only data within the loop.
Within the loop, all data movement is managed

by ITERATE_STRIPS() , which returns a true value
as long as there are additional parallel data to pro-
cess. For in-core shapes no I/O is required, and
ITERATE_STRIPS() returns true only once. For out-
of-core shapes,ITERATE_STRIPS() also manages I/O,
prefetching the next strip and writing back previous strips.
I/O is striped across disks in a parallel disk system. Asyn-
chronous I/O is overlapped with in-core computation.

Once data is in-core,INCORE_STRIP() locates the
current in-core strip of each parallel variable. All these
strips have the same number of in-core positions, as re-
turned byCOUNT_STRIP(), regardless of the element
size. Thus, for example, there are as many in-core ele-
ments ofharm as ofcontext_0 in the second loop of
Figure 6, although elements ofharm occupy eight bytes
and elements ofcontext_0 occupy one byte.

The inner loop processes in-core data, iterating a virtual-
processor index through the in-core positions. Within the
inner loop, all parallel data references are replaced by strip
array references, indexed by the virtual processor number.
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bool (*context_0): current = CONTEXT; /* inherited context */
bool where_1: current; /* context value */
double red_2 = 0; /* sum accumulator */

ACCESS_DATA(context_0,’C’) /* loop over context */
ACCESS_DATA(&where_1,’W’) /* loop over where_1 */
ACCESS_DATA(&harm,’W’) /* loop over harm */
while (ITERATE_STRIPS()) { /* LOOP 1’’’’ */

int vp_10; /* VP index */
bool *strip_11 = (bool*)INCORE_STRIP(context_0); /* in-core data */
bool *strip_12 = (bool*)INCORE_STRIP(&where_1);
double *strip_13 = (double*)INCORE_STRIP(&harm);
for (vp_10 = COUNT_STRIP(); 0<=--vp_10; ITERATE_PCOORD()) {

long k_3; /* scalar ELT(k) */
if (!context_0 || strip_11[vp_10]) /* inherited context */

k_3 = PCOORD(0); /* set k */
strip_12[vp_10] = (!context_0 || strip_11[vp_10]) && (k_3 > 0);
if (strip_12[vp_10]) { /* in new context */

strip_13[vp_10] = 1.0 / k_3; /* set envelope */
}

}
}

CONTEXT = &where_1; /* push context */

filter(&harm); /* call */

ACCESS_DATA(context_0,’C’) /* loop over context */
ACCESS_DATA(&harm,’R’) /* loop over harm */
while (ITERATE_STRIPS()) { /* LOOP 2’’’’ */

int vp_13; /* VP index */
bool *strip_14 = (bool*)INCORE_STRIP(context_0); /* in-core data */
double *strip_15 = (double*)INCORE_STRIP(&harm);
for (vp_13 = COUNT_STRIP(); 0<=--vp_13; ITERATE_PCOORD()) {

long k_4; /* scalar ELT(k) */
bool where_5; /* scalar ELT(where_1) */
if (!context_0 || strip_14[vp_13])

k_4 = PCOORD(0);
where_5 = (!context_0 || strip_14[vp_13]) && (k_4 > 0);
if (where_5) {

red_2 += strip_15[vp_13]; /* sum envelope */
}

}
}

red_2 = sum_reduce(red_2); /* combine sum */

CONTEXT = context_0; /* pop context */

return red_2;

Figure 6. Expanded loop code. PASSconstructs have been expanded into inner in-core and outer
sectioning loops. Parallel data is prefetched and accessed through in-core strip pointers.

If necessary, each iteration callsITERATE_PCOORD()to
set the next next value ofPCOORD(0). The resulting code
structure encourages optimization by the final C compiler.

6. Performance

We measured performance of the loops in Figure 6, vary-
ing the number of positions in the shapeseries and
characteristics of parallel data access. The test system is
a DEC 2100 server with two 175-MHz Alpha processors,
eight disks, and 320 MB of main memory. The main com-
putation uses a single thread. An I/O thread manages I/O for
each of the disks. Each processor can run any ready thread.

After the transformations described above, the first loop
writes 9 bytes of data and the second loop reads 8 bytes for
each position in the shapeseries . For this example, the
main memory capacity is a little over 35 million positions.
Out-of-core data is accessed through the file system by way
of a 64 MB in-core buffer pool.

Figure 7 shows the average time per position for problem
sizes ranging from 1 million to 100 million positions. An
in-core shape relies on demand paging to access the data.
Out-of-core shapes manage I/O through the file system. The
standard ViC* implementation uses asynchronous I/O, but
a synchronous implementation reduces the memory buffer
requirements. The number of parallel disks varied among
1, 2, 4, and 8.
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Figure 7. Performance of the loops in Figure 6 with in-core and out-of-core data implementations.
(Note that the horizontal axis is not linear.)

In-core data access with demand paging outperforms
out-of-core data access at small problem sizes, but it de-
grades rapidly at large problem sizes. Below 30 million po-
sitions, there is little paging, and the time to process each
position averages around one microsecond. As the problem
size approaches the main memory size, demand paging de-
grades performance sharply. For problem sizes above 50
million positions, demand paging adds about 5 microsec-
onds to the processing time for each position. An address
space of 1 GB limits in-core problem sizes to 100 million
positions.

Although out-of-core data access shows higher overhead
costs at small problem sizes, it maintains performance at
large problem sizes. At small problem sizes, fixed-cost
loop setup operations dominate. The system buffer cache
makes a copy of out-of-core data as it is read or written,
thus adding a constant to the time for each position. The
buffer cache is effective in reducing I/O below 30 million
positions, the region where demand paging is also effective,
but at a higher cost. As the problem size becomes greater
than the size of main memory, out-of-core data-access times
remain stable. At 100 million positions, out-of-core data ac-
cess across eight disks takes between 2 and 3 microseconds
per position.

At small problem sizes an in-coreshape yields better
performance than anoutofcore shape . The program-
mer should choose between them based on available mem-
ory size and expected data accesses, although the the run-
time system could be extended to make such decisions au-
tomatically using an adaptive algorithm.

Even with a single disk, the ViC* out-of-core code out-
performs demand paging at large problem sizes. Increasing
the number of parallel disks further reduces the access time.
Synchronous I/O across eight disks reduces performance
somewhat by removing overlap between computation and

I/O, but the ViC* code continues to access disks in parallel.
The buffer pool is large enough that the increased buffer
sizes available for synchronous I/O provide little benefit.

A programmer can achieve similar performance manu-
ally by using a similar strategy. The ViC* library uses stan-
dard I/O calls, with the addition of a small overhead. The
advantage of the ViC* I/O library lies in its use of high-
performance interfaces. Such I/O interfaces calls compli-
cate the program structure, as seen in Figure 6. Further,
some I/O optimizations rely on data-flow assumptions that
must be re-validated when the program is modified. The
ViC* compiler provides a way to do this, and it allows the
programmer to easily convert between in-core and out-of-
core programming. Of course, a skilled and patient pro-
grammer may achieve better performance by global pro-
gram restructuring.

7. Conclusion

We have described an implementation of virtual memory for
out-of-core data-parallel programming with a parallel disk
system. ViC* divides responsibility for memory manage-
ment between the programmer, who declaresoutofcore
shapes, the compiler, which restructures parallel operations,
and the runtime system, which manages I/O data trans-
fers and buffering. This approach differs from conventional
demand-paged virtual memory, which operates at the level
of instructions and memory references. The ViC* runtime
requires minimal operating system support, exploiting par-
allel and asynchronous I/O where that is available.

By using explicit runtime I/O interfaces, the ViC* com-
piler is able to manage parallel virtual memory at a higher
level, coordinating the out-of-core data transfers across an
entire loop. The compiler also emits calls to a runtime li-
brary that invokes efficient parallel disk algorithms for out-
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of-core communication functions. In both ways, the ViC*
system significantly reduces disk-access costs for out-of-
core data.
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