An Efficient Group Communication Architecture over ATM
Networks

Sung-Yong Park, Joohan Lee, and Salim Hariri
High Performance Distributed Computing (HPDC) Laboratory
Department of Electrical Engineering and Computer Science
Syracuse University
Syracuse, NY 13244
{sypark, jlee, hariri}@cat.syr.edu

Abstract

NYNET (ATM wide-area network testbed in
New York state) Communication System (NCS)
1s a multithreaded message-passing tool developed
at Syracuse University that provides low-latency
and high-throughput communication services over
Asynchronous Transfer Mode (ATM)-based high-
performance distributed computing (HPDC) environ-
ments. NCS provides flexible and scalable group com-
munication services based on dynamic grouping and
tree-based multicasting. The NCS architecture, which
separates the data and control functions, allows group
operations to be implemented efficiently by utilizing
the control connections when transferring status in-
formation (e.g., topology information, routing infor-
mation). Furthermore, NCS provides several different
algorithms for group communication and allows pro-
grammers to select an appropriate algorithm at run-
time.

In this paper we overview the general architecture
of NCS and present the multicasting services provided
by NCS. We analyze and compare the performance
of NCS with that of other message-passing tools such
as p4, PVM, and MPI wn terms of primitive perfor-
mance and application performance. The benchmark
results show that NCS outperforms other message-
passing tools for both primitive performance and ap-
plication performance.

1 Introduction

We are experiencing a rapid deployment of high-
performance distributed systems (HPDS) that are typ-
ified by a heterogeneous collection of machines with
widely differing performance characteristics and are
connected by one or more high-speed networks. These
systems combine workstations, shared-memory mul-
tiprocessors, and distributed-memory multicomput-

ers. The high-speed network technologies used include
Asynchronous Transfer Mode (ATM) [1], Myrinet [2],
Gigabit Ethernet [3], High Performance Parallel In-
terface (HIPPI) [4], and wireless technologies. Con-
sequently, the development of high-performance dis-
tributed computing (HPDC) applications is a non-
trivial task that requires a thorough understanding
of the application requirements and architecture, and
the communication services provided.

HPDC applications require low-latency and high-
throughput communication services comparable to
that experienced in a bus-based parallel computer.
HPDC applications have different Quality of Service
(QoS) requirements and even one single application
might have multiple QoS requirements during the
course of its execution (e.g., interactive multimedia
applications). Furthermore, a significant fraction of
the traffic in HPDC applications is multi-point (e.g.,
video-conferencing, collaborative computing). In or-
der to meet the requirements of a wide variety of
HPDC applications, the parallel and distributed soft-
ware systems should provide high performance and dy-
namic group communication services. The group com-
munication services provided by traditional message-
passing tools such as p4 [11], Parallel Virtual Machine
(PVM) [12], Message-Passing Interface (MPI) [13],
Express [15], and PARMACS [16] are fixed and thus
can not be changed to meet the requirements of differ-
ent HPDC applications. Furthermore, some message-
passing tools such as PVM implement group commu-
nication operations by repeatedly calling send rou-
tines for each participant, which is computationally
expensive and not scalable. There have been sev-
eral distributed computing software tools specially de-
signed to support group communication services such
as Isis [18], Horus [19], Totem [20] and Transis [21].
However, most of them are designed to support spe-

cial functionalities (e.g., fault tolerance, message or-
dering, virtual synchrony, group partition) rather than
to achieve high throughput.

NYNET Communication System (NCS) [7, 8, 9] is
a multithreaded message-passing tool for an ATM-
based HPDC environment that provides low-latency
and high-throughput communication services. NCS
capitalizes on a thread-based programming model to
overlap computation and communication, and develop
a dynamic message-passing environment with separate
data and control paths. This leads to a flexible, adap-
tive message-passing environment that can support
multiple flow-control, error-control, and multicasting
algorithms. This paper overviews the general archi-
tecture of NCS and presents the multicasting services
provided by NCS. NCS multicasting services are based
on dynamic grouping, where each process can dynami-
cally create, join, or leave a group. NCS uses a binary
tree to implement multicasting operations, which is
more efficient and scalable than repetitive techniques
especially when the number of groups is large. Fur-
thermore, NCS group communication services can be
implemented using different group communication al-
gorithms. These algorithms can be selected by the
application at runtime.

The rest of the paper is organized as follows. Sec-
tion 2 outlines the general architecture of NCS. Sec-
tion 3 discusses an approach to implement the NCS
multicasting services. Section 4 analyzes and com-
pares the multicasting performance of NCS with that
of other message-passing tools such as p4, PVM, and
MPI. Section 5 contains the summary and conclusion
of the paper.

2 NCS Overview

In this section we present an overview of the NCS
architecture. Additional details about NCS architec-
ture can be found in [9].

Figure 1 shows the general architecture of NCS.
An NCS application consists of multiple Com-
pute_Threads that include programs to perform the
computations of the application. NCS supports both
the host-node programming model and the Single Pro-
gram Multiple Data (SPMD) programming model. In
both models processes are created at each node by us-
ing the hostfile that specifies the initial configurations
of machines to run NCS applications. After each pro-
cess 1s spawned, it creates multiple Compute_Threads
according to the computation requirements of the ap-
plication. The advantage of using a thread-based
programming paradigm is that 1t reduces the cost of
context switching, provides efficient support for fine-
grained applications, and allows the overlapping of

v (CIO)
©©® User Application User Application @

NYNET Communication System Control NYNET Communication System

Data Transfer Data Transfer
Threads Control Threads Threads

@

Control Threads

@
clelc/ RSNl I e
© ©)

-keke
® O b ®©

N A (Socket, ATM API, Trap) f
\ ' N
Control * |
informetion 'y 1 Data Information "\, 1 Data
N Data Connection Al

Network Interface

Network Interface

Control Connection

C - Compute Thread, MT - Master Thread
FC - Flow Control Thread, EC - Error Control Thread, MC - Multicast Thread
CS- Control Send Thread, CR - Control Receive Thread, S- Send Thread, R - Receive Thread

Figure 1: NCS General Architecture

computation and communication.

NCS separates control and data functions by pro-
viding two planes (see Figure 1): a control plane
and a data plane. The control plane consists of
several threads that implement important control
functions (e.g., connection management, flow con-
trol, error control) in an independent manner. These
threads include Master_Thread, Flow_Control_Thread,
Error_Control_Thread, Multicast_Thread, Con-
trol_Send_Thread, and Control_Receive_Thread (we call
them control threads). The data transfer threads
(Send_Thread and Receive_Thread) in the data plane
are spawned on a per-connection basis by the Mas-
ter_Thread to perform only the data transfers asso-
ciated with a specific connection. Furthermore, the
control and data information from the two planes are
transmitted on separate connections. All control infor-
mation (e.g., flow control, error control, configuration
information) is transferred over the control connec-
tions, while the data connections are used only for the
data transfer functions. The separation of control and
data functions eliminates the process of demultiplex-
ing control and data packets within a single connec-
tion and allows the concurrent processing of control
and data functions. This allows applications to utilize
all available bandwidth for the data transfer functions
and thus improves the performance.

NCS supports multiple flow-control (e.g., window-
based, credit-based, or rate-based), error-control (e.g.,
go-back N or selective repeat), and multicasting al-
gorithms (e.g., repetitive send/receive or a multicast
spanning tree) within the control plane to meet the
QoS requirements of a wide range of HPDC applica-
tions. Each algorithm is implemented as a thread and

programmers activate the appropriate thread when es-
tablishing a connection to meet the requirements of a
given connection.

NCS provides three application communication
interfaces such as socket communication interface
(SCI), ATM communication interface (ACT), and
high-performance interface (HPI) in order to support
HPDC applications with different communication re-
quirements. The SCI is provided mainly for applica-
tions that must be portable to many different com-
puting platforms. The ACI provides the services that
are compatible with ATM connection-oriented services
where each connection can be configured to meet the
QoS requirements of that connection. The HPT sup-
ports applications that demand low-latency and high-
throughput communication services.

3 Multicasting Support in NCS

The implemented NCS multicasting algorithm is
based on dynamic grouping, where each NCS process
can dynamically create, join, or leave a group during
the lifetime of the process. Within each group, there is
a single group server that is responsible for intergroup
communications and multicasting. The multicasting
operation in NCS is implemented by using a binary
tree. This approach is more efficient than repetitive
techniques especially when the number of groups is
large. In addition, the separation of control and data
functions facilitates the development of efficient multi-
casting. For example, when the status of each process
has been changed, it can be broadcast promptly to
other processes without interfering with data traffic.
This allows NCS to prepare most of the information
needed to activate multicasting operations (e.g., tree
information, group information) in advance before the
actual multicasting operations are initiated. This re-
duces the set-up time (e.g., time to build a tree at
runtime) of the multicasting operations and thus im-
proves the performance of NCS group communication
services. Other multicasting algorithms can be incor-
porated into NCS and activated at runtime by user
applications without changing the NCS architecture
and its supported group communication services.

In what follows we define the NCS group communi-
cation primitives and describe the NCS multicasting
algorithm to implement these primitives.

3.1 NCS Group Communication Primi-
tives
Figure 2 shows a set of NCS primitives that provide
group communication services.
NCS multicasting primitive (NCS_mcast()) sup-
ports three classes of multicasting operations: (1)

int NCS_mecast(int mode, char *gname[], NCS_Dtype type,
int tag, char *msg, int len);
- Multicasts a message to the groups specified by gnamel[].

int NCS_group_create(char *gname, int com_mode, int fc, int ec,
it me, struct QoS);

- Creates a group named gname. Returns the group identifier.

int NCS_group_join(char *gname);
- Joins the group specified by gname.

int NCS_group_destroy(char *gname);
- Destroys the group specified by gname.

int NCS_group_leave(char *gname);
- Leaves the group specified by gname.

int NCS_group_num_members(char ¥*gname);
- Returns the total number of members in the group.

Figure 2: NCS Group Communication Primitives

global broadeast, (2) local broadcast, and (3) global mul-
ticast. The global broadcast is used to transmit mes-
sages to all groups defined in the NCS applications.
The local broadcast is used to transmit messages to
all members within the same group. The global mul-
ticast is used to transmit messages to the specified
groups. For all three operations, the destination end-
point is not the members, but the group servers. They
can be invoked with either a reliable mode or an un-
reliable mode. The data-type of message (e.g., char,
int, float, double, etc) and the message type can be
specified by providing parameters to the NCS_meast()
primitive.

Users can create a new group by using the
NCS_group_create() primitive. In this case a particular
communication scheme (e.g., error-control algorithm,
flow-control algorithm, multicasting algorithm), a par-
ticular communication interface (e.g., SCI, ACI, HPT),
and ATM QoS parameters can be assigned to the
group communication channel (e.g., binary tree). All
the new processes that join this group by invoking
NCS_group_join() primitive use the same communica-
tion scheme and communication interface when send-
ing data over the group communication channel. The
attributes assigned to this channel cannot be changed
by the group members during program execution and
they are released when the group is destroyed by using
the NCS_group_destroy() primitive.

3.2 NCS Multicasting Algorithm

At program startup, a default NCS group called
NCS_GRP is created, and each NCS process in the

hostfile joins this group automatically (see Figure 3).
The hostfile is used to specify a list of machines to run
NCS applications. The first process specified in the
hostfile becomes a master group server (MGS). Each
process that creates a new group becomes a local group
server (LGS) of that group. The MGS represents all
the LGSs and coordinates the group communication
operations between these servers. The LGS is respon-
sible for multicasting operations within the local group
and maintains the membership information of the lo-
cal group. A global multicasting tree (GMT) is built
to connect all the LGSs rooted at the MGS. All the
group members within the same group are connected
by a local multicasting tree (LMT) rooted at the LGS
of that group. The MGS and LGSs periodically ex-
change the status information of each group over the
control connections.

Since three classes of multicasting operations (e.g.,
global broadcast, local broadcast, and global multicas-
ting) are implemented using similar schemes, we will
only describe the algorithm for global broadcast. The
multicasting algorithm for global broadcast consists of
six steps, as shown in Figure 4:

1. When the Compute_Thread of a process in-
vokes the NCS_meast() primitive, the Multi-
cast_Thread of that process activates the corre-
sponding Send_Thread to transmit an actual mes-
sage to the MGS.

2. The MGS transmits the received message to the
other LGSs using its GMT.

3. If the NCS_meast(} is invoked with reliable mode,
each LGS that received the message sends an ac-
knowledgment back to the MGS along the GMT.

4. An LGS maintains two buffers. The first buffer is
used to assemble the messages, which are then
transferred to the second buffer. The second
buffer is used to retransmit the messages to the
members that have not correctly received the
messages.

5. Each LGS locally multicasts the message to its
group members using its LMT.

6. If the NCS_mecast() is invoked with a reliable
mode, each member that received the message
sends an acknowledgment back to the LGS along
the LMT. If there is any group member that has
not received a message within the timeout period,
the LGS of the group retransmits the message.
This reduces the retransmission traffic from the
source process.

The pseudo code for this algorithm is presented in
Figure 5.

4 Benchmarking Results

In this section we analyze and compare the per-
formance of NCS with that of other message-passing
tools such as p4, PVM, and MPI using two levels of
performance evaluation [10]: tool performance level
(TPL) and application performance level (APL). In
TPL we benchmark the performance of the broad-
casting primitives provided by each message-passing
tool, while in APL we compare the execution time of
two applications (e.g., Back-Propagation Neural Net-
work (BPNN) learning algorithm and static voting al-
gorithm).

All experiments have been conducted over six SUN-
4 workstations and four IBM RS/6000 workstations
interconnected by an IBM 8260 ATM switch and a
Cabletron MMAC-Plus ATM switch. In all mea-
surements we used the NCS implementation over
SCI. Consequently, the effect of error control and
flow control is not considered in these experiments.
The socket buffer size was set to 32 Kbytes and the
TCP_NODELAY option was enabled. It is reported
in [5] that setting those two options improves the
socket throughput. For the PVM (Version 3.3.11)
applications, we used the PVM Direct mode, where
the direct TCP connection is made between two end-
points. The MPICH [14] (Version 1.0.13) was used to
benchmark the MPI applications.

4.1 Tool Performance Level (TPL)

Figure 6 compares the performance of broad-
casting primitives (e.g., NCS_mcast(), pvm_meast(),
p4-broadeast(), and MPI_Beast()) of four message-
passing tools over an ATM network when message
sizes vary from 1 byte to 32 Kbytes. The group
size varies from two to ten. Since ten heteroge-
neous workstations (six SUN-4 workstations and four
IBM/RS6000 workstations) were used for measuring
the timings, the results for the group size up to six
represent the characteristics of broadcasting primi-
tives over the SUN-4 platform, while the results for
the group sizes of eight and ten represent the charac-
teristics of broadcasting primitives over heterogeneous
platforms.

As we can see from Figure 6, the execution time of
each broadcasting primitive increases linearly for small
message sizes up to 1 Kbytes, while it shows different
patterns for large message sizes over 1 Kbytes.

NCS primitive (NCS_mcast()) achieved better per-
formance (e.g., about five times faster than p4 and
MPT) for various message sizes and group sizes. For

HOSTFILE

slocum.syr.edu|

link.syr.edu

som.syr.edu

max.syr.edu
.

Group "NCS_GRP"

NCS_group_\create(" NewYork™)

NCS group_join(" NewYork")

7@

NCS_group_join(" Syracuse")

[CEc ® |
\ NCSjroupL’create(" Syracuse') “ @ !

Global Multicasting Tree

Local
Multicasting
Tree

Data Packet
Data Packet

Control Packet

Control Packet

Storefor Local Multicasting Tree

Retransmission

el T - Group 1 Group 2

MGS- Master Group Server, LGS- Local Group Server, P1~ F;n’:F;rocm MGS- Master Group Server, LGS- Local Group Server, P1~Pn - Processes, B1~2 - Buffers

Figure 3: Group Structure in the NCS Environ- Figure 4: Multicasting in the NCS Environment

ment

Thread Master Group Server (MGS)
repeat Get the requests from other servers or members
if group creation or destruction is requested then
Update the GMT and send the information to the LGSs over the control path
else if a Global Broadcast is requested
Send the message to the LGSs along the GMT
if a reliable multicast is requested then
Check the ACKs from the LGSs and retransmit if necessary
endif
endif
end

Thread Local Group Server (LGS)
repeat Get the requests from other servers or members

if group creation, destruction, join or leave are notified then
Update the local database (or LMT) and send the information to all the members over the control path

else if a message received for Global Broadcast or Global Multicast then
Send the message to all the members along the LMT
Route the message to other LGSs if necessary

if a reliable multicast is requested then
Merge the ACKs from the LGSs and send an ACK to its parent

Check the ACKs from the members and retransmit if necessary
endif

else if a Local Broadcast is requested
Send the message to all the members along the LMT

if a reliable multicast is requested then
Check the ACKs from the members and retransmit if necessary
endif
endif
end

Thread Multicasting Thread
if group creation, destruction, join or leave are notified then

Update the local database for this information
else if Global Broadcasting or Local Broadcasting are requested then
Send the message to the MGS (Global Broadcasting) or LGS (Local Broadcasting)

else if a Global Multicasting is requested then
Setup a spanning tree at runtime and send the message to the LGSs along the new spanning tree

endif

Figure 5: Pseudo code for the Multicasting Protocol

Time (ms)

Time (ms)

Time (ms)

20

Broadcasting Performance over ATM (Message Size = 1 Byte)

18 |

16 [

12 |

40

6 8
Group Size
Broadcasting Performance over ATM (Message Size = 4 KBytes)
T

35 |

25 |-

X

6 8
Group Size

140

Broadcasting Performance over ATM (Message Size = 16 KBytes)
T T T

6
Group Size

10

Time (ms)

Time (ms)

22

20

18

16

60

50

40

30

250

200

Broadcasting Performance over ATM (Message Size = 1 KBytes)

NCS +—

MPI -5--
PVM -

1 1 1
2 4 6 8 10
Group Size
Broadcasting Performance over ATM (Message Size = 8 KBytes)

T T
NCS +—
P4 —+--
MPI -5--
[PVM -x T
r A

1 1 1
2 4 6 8 10
Group Size
Broadcasting Performance over ATM (Message Size = 32 KBytes)

T T
NCS —+—
P4 —+--
MPI -5--
PVM -x

6
Group Size

Figure 6: Comparison of Broadcasting Performance over ATM

example, given a message size of 32 Kbytes, the NCS
broadcasting time is 42.966 milliseconds, while p4,
PVM, and MPI took 227.568 malliseconds, 109.403
milliseconds, and 249.961 mailliseconds, respectively.
Furthermore, NCS_mcast() primitive shows almost
similar performance for large group sizes as we in-
crease the message size. For a message size of 16
Kbytes, the NCS broadcasting time using six mem-
bers is 22.596 milliseconds and the broadcasting time
using ten members is 24.623 mulliseconds. In the
NCS_mecast() primitive where most of the information
for performing group communications (e.g., setup bi-
nary tree, setup routing information) is set up in ad-
vance by using the control connections, the start-up
time for the broadcasting operations is very small.
Also, the tree-based broadcasting scheme improves
the performance as the group size gets larger. Con-
sequently, the larger the message size and group size,
the better 1s the performance of NCS when compared
to that of other message-passing tools.

The performance of p4 primitive (p4_broadcast()) is
comparably good except for large message sizes. For
message size of 32 Kbytes, p4 performance gets worse
rapidly as we increase the group size. One of the
reasons for this i1s that p4 has also low performance
for point-to-point communications with large message
sizes, as shown in Figures 7 and 8.

The performance of PVM primitive (pvm_mecast())
1s poor for small message sizes but as the message size
and group size increase, its performance improves. In
the pvm_mcast() where the broadcasting operation is
implemented by repeatedly invoking a send primitive,
the performance is expected to increase linearly as we
increase the group size. Moreover, pvm_mcast() con-
structs a multicasting group internally for every invo-
cation of the primitive, which results in a high start-
up time when transmitting small messages as shown
in Figure 6 (message size 1 byte and 1 Kbytes).

The MPI primitive (MPI_Bcast()) shows compara-
ble performance to NCS and p4 for relatively small
message sizes (e.g., up to 1 Kbyte) and small group
sizes (e.g., up to 6 members) but its performance
degrades drastically for message sizes larger than 4
Kbytes and large group sizes (e.g., over six members).

4.2 Application Performance Level
(APL)

In this subsection we compare the performance of
NCS with that of other message-passing tools by mea-
suring the execution time of two applications (i.e.,
BPNN learning algorithm and static voting algorithm)

that require intensive group communication services.

BPNN Learning Algorithm

Training BPNN for character recognition is one of the
problems in Artificial Intelligence (AI) area that re-
quires intensive group communications. We used a
master/slave programming model to parallelize this
application, as shown in Figure 9. In this algorithm
the master process distributes the weight vectors be-
tween the input layer and the hidden layer to the slave
processes. The slave processes receive weight vectors
from the master process and compute the output val-
ues of the hidden nodes allocated to them, then trans-
mit those output values back to the master process.
After the master process receives the output values
of the hidden nodes from the slave processes, it com-
putes the output values of the output nodes, computes
mean-squared error, and updates the weights vectors
between input layer and hidden layer, and between
hidden layer and output layer. These steps continue
until the value of the mean-squared error falls un-
der an appropriate value. This application intensively
uses the broadcasting primitives when distributing the
weight vectors to all the slave processes. The BPNN
used in this experiment has 100 input nodes, 630 hid-
den nodes, and 4 output nodes to train 16 input vec-
tors which represent the hexadecimal digits from 0x01
to 0xOF.

Static Voting Algorithm

Replicating data at different locations is a common
approach to achieve fault tolerance in distributed com-
puting systems. One well-known technique to manage
replicated data is voting mechanisms. The algorithm
used in this experiment is based on the static voting
scheme proposed by Gifford [22]. In this algorithm
(See Figure 10) we assume that there is a file server
process in each node that handles read and write re-
quests for a given file. Each file server process issues
arbitrary read and write requests that were produced
randomly using a random number generator. When-
ever a server process issues a file access request, it
sends a Lock_Request message for that file to the local
lock manager and broadcasts a Vote_Request message
to all other server processes. When the server pro-
cess receives a Vole_Request message from other server
processes, it sends a Lock_Request message for the re-
quested file to the local lock manager. The server
process then returns the version number of the replica
and the number of votes assigned to the replica to the
server process that initiated the Vote_Request. Based
on the information returned from other server pro-
cesses, the server process decides if the file access is
granted and the file is the latest copy. If the local

Time (ms)

70

60

50

40

30

20

10

Point-to-Point Communication Performance over ATM (SUN 4/SunOS 5.5)
T T

T T T

L L L

25

Point-to-Point Communication Performance over ATM (RS6000/AIX 4.1)
T T

Time (ms)

1K 4K 8K
Message Size (Bytes)

Figure 7: Point-to-Point Communication Performance

32K 64K 1

Point-to-Point Communication Performance over ATM (SUN/RS6000)
T T T

8K 32K 64K
Message Size (Bytes)

over ATM Using Same Platform

450 T T
NCS —-—
400 |- P4 4+ b
MPI -&--
PVM -
350 —
300 —
@ 250 —
£ ;
g @
S 200 | g i
150 - —
100 —
50 L a ’/,—/‘/ i
et et
g e g-mmmmoITT e
0 g
1 1K 4K 32K 64K

8K
Message Size (Bytes)

Figure 8: Point-to-Point Communication Performance over ATM Using Heterogeneous Platform

Input Layer Size= N, Hidden Layer Size= M, Output Layer Size=4

1=Read/Write Request, 2=Vote_Request, 3=Version Number and Votes
4=Request L atest Copy, 5=Return Latest Copy, 6=Release_L ock

Figure 9: Back-Propagation Neural Network
(BPNN) Learning Algorithm

copy is different from those replicated at other server
processes, it gets the latest copy from other server
processes. Finally, the file server process broadcasts
a Release_Lock message to all other file servers if the
file access is granted. In this experiment we assumed
that there are 50 different files replicated at each node
and each file server process generates 500 read or write
requests for arbitrary files.

Performance Comparison

Figure 11 shows the performance of each message-
passing tool to implement these two applications
running over four homogeneous workstations (e.g.,
four SUN-4 workstations running SunOS 5.5 or four
IBM /RS6000 workstations running ATX 4.1) and eight
heterogeneous workstations (e.g., four SUN-4 worksta-
tions and four IBM/RS6000 workstations) intercon-
nected by an ATM network. Due to the restrictions
of the MPT broadcasting primitive (MPI_Bcast()), we
couldn’t implement the static voting algorithm us-
ing MPI. In MPI all messages broadcast using the
MPI_Beast() should be received by other processes us-
ing the MPI_Beast() primitive instead of the receive
primitive. Furthermore, one of the argument of this
primitive represents the rank of the root process that
initiated the broadcasting operation and this value
should be identical on all processes that receive the
message. Since the broadcasting operations in static
voting algorithm are initiated randomly by different

Figure 10: Static Voting Algorithm

processes, it 1s difficult to obtain the root of the broad-
casting operation. Consequently, implementing static
voting algorithm using MPI is not straightforward.

As shown in Figure 11, the message-passing tool
that has the best performance at TPL also has the
best performance at APL. For example, NCS appli-
cations outperform other implementations regardless
of the platform used. In the BPNN application us-
ing eight heterogeneous workstations, the execution
time of NCS 1s 135 seconds, while p4, PVM, and MPI
took 1088 seconds, 429 seconds, and 620 seconds, re-
spectively. In the BPNN application where large mes-
sages are broadcast repeatedly, the performance im-
provement is noticeable and it improves further as we
increase the group size. In the static voting applica-
tion where the sizes of the broadcasting messages are
small and the communications take place randomly,
the performance of NCS is comparable to that of other
message-passing tools for small size groups but the
performance gap gets wider as we increase the group
size. We believe that most of the improvements of
NCS are due to overlapping of communications and
computations and the use of tree-based broadcasting
algorithm.

On the other hand, PVM implementations show
better performance than MPI and p4 implementations
in heterogeneous environment.

ngys
o=sa
NMW

DN

0000000
S S} S

I S @
= =

IS} <3 S
© < «

ation Performance

of Applic

Figure 11: Comparison

5 Conclusion

In this paper we have presented NCS architecture
that provides efficient and flexible group communica-
tion services over an ATM network. We have evalu-
ated the performance of NCS group communication
primitives and applications. The benchmark results
showed that NCS outperforms other message-passing
tools. It is clear that the NCS novel architecture,
which separates the data and control functions and
the use of tree-based multicasting scheme played an
important role in improving the performance of the
communication primitives and applications.

References

[1] J. Y. Le Boudec, “The Asynchronous Transfer
Mode: a tutorial”, Computer Networks and ISDN
Systems, Vol. 24, No. 4, pp. 279-309, 1992.

[2] N. J. Moden, D. Cohen, R. E. Felderman, A. E.
Kulawik, C. L. Seitz, J. N. Seizovic, and W. Su,
“Myrinet: A Gigabit-per-second Local Area Net-
work”, IEEE Micro, Vol. 15, No. 1, pp. 29-36,
February 1995.

[3] Gigabit Ethernet Alliance, “Gigabit Ethernet
Overview”, White Paper, September 1997.

[4] D. Tolmie, and J. Renwick, “HIPPI: Simplicity
Yields Success”, IEEE Network, pp. 28-32, Jan-
uary 1993.

[6] M. Lin, J. Hsieh, D. Du, and J. Thomas, “Dis-
tributed Network Computing over Local ATM
Networks”, IEEE Journal on Selected Areas in
Communications, Vol. 13, No. 4, pp. 733-747, May
1995.

[6] S. Hariri, S. Y. Park, R. Reddy, M. Subramanyan,
R. Yadav, and M. Parashar, “Software Tool Eval-
uation Methodology”, Proc. of the 15th Interna-
tional Conference on Distributed Computing Sys-
tems, pp. 3—10, May 1995.

[7] S. Y. Park, S. Hariri, Y. H. Kim, J. S. Har-
ris, and R. Yadav, “NYNET Communication Sys-
tem (NCS): A Multithreaded Message Passing
Tool over ATM Network”, Proc. of the 5th In-
ternational Symposium on High Performance Dis-
tributed Computing, pp. 460-469, August 1996.

[8] S. Y. Park and S. Hariri, “A High Performance
Message Passing System for Network of Worksta-
tions” | The Journal of Supercomputing, to appear.

[9] S. Y. Park, J. Lee, and S. Hariri, “A Multithreaded
Communication System for ATM-Based High Per-
formance Distributed Computing Environments”,
Submaitted to IEEE Transactions on Parallel and
Dustributed Systems, 1997.

[10] S. Y. Park, J. Lee, and S. Hariri, “An Evalu-
ation Methodology for Parallel/Distributed Soft-
ware Tools” , Submutted to IEEE Transactions on
Parallel and Distributed Systems, 1997.

[11] R. Butler and E. Lusk, “Monitors, message, and
clusters: The p4 parallel programming system”,
Parallel Computing, Vol. 20, pp. 547-564, April
1994.

[12] V. S. Sunderam, “PVM: A Framework for Paral-
lel Distributed Computing”, Concurrency: Prac-
tice and Ezperience, Vol. 2, No. 4, pp. 315-340,
December 1990.

[13] MPI Forum, “MPI: A Message Passing Inter-
face”, Proc. of Supercomputing 93, pp. 878-883,
November 1993.

[14] B. Gropp, R. Lusk, T. Skjellum, and N. Doss,
“Portable MPI Model Implementation”, Argonne
National Laboratory, July 1994.

[15] J. Flower, and A. Kolawa, “Express is not just a
message passing system. Current and future direc-
tions in Express”, Journal of Parallel Computing,

Vol. 20, No. 4, pp. 597-614, April 1994.

[16] S. Gillich, and B. Ries, “Flexible, portable per-
formance analysis for PARMACS and MPI”, Proc.
of High Performance Computing and Networking:
International Conference and Ezhibition, May,

1995.

[17] L. Dorrmann, and M. Herdieckerhoff, “Parallel
Processing Performance in a Linda System”, In-
ternational Conference on Parallel Processing, pp.

151-158, 1989.

[18] K. P. Birman, R. Cooper, T. A. Joseph, K.
P. Kane, F. Schmuck, and M. Wood, “Isis - A
Distributed Programming Environment”, User’s
Guide and Reference Manual, Cornell University,

June 1990.

[19] R. Renesse, T. Hickey, and K. Birman, “Design
and performance of Horus: A lightweight group
communications system” | Technical Report TR94-
1442, Cornell University, 1994.

[20] L. E. Moser, P. M. Melliar-Smith, D. A.
Agarwal, R. K. Budhia and C. A. Lingley-
Papadopoulos, “Totem: A Fault-Tolerant Multi-
cast Group Communication System”, Communi-

cations of the ACM, Vol. 39, No. 4, pp. 54-63, 1996.

[21] D. Dolev and D. Malki, “The Transis Approach to
High Availability Cluster Communication”, Com-
munications of the ACM, Vol. 39, No. 4, pp. 64-70,
1996.

[22] D. K. Gifford, “Weighed Voting for Replicated
Data”, Proc. of the 7th ACM Symposium on Op-
erating System, pp. 150-162, December, 1979.

Biographies

Sung-Yong Park received a BS degree in computer
science from Sogang University, Korea, in 1987 and
MS degree in computer science from Syracuse Univer-
sity, Syracuse, NY in 1994. He is currently working
toward the PhD degree in computer science at Syra-
cuse University. From 1987 to 1992, he has worked as
a research engineer at LG Electronics (former Gold-
star Telecommunication), Korea. From 1993 to 1996,
he has worked at the Northeast Parallel Architectures
Center (NPAC) at Syracuse University as a research
assistant on ISDN and ATM networking. Since 1996,
he has been with Computer Applications and Software
Engineering Center (CASE) at Syracuse University.
His research interests include high performance dis-
tributed systems, high speed networks, network com-
puting, and multimedia.

Joohan Lee received BS and MS degrees in computer
science from Sogang University, Korea, in 1993 and
1995 respectively, where he worked in artificial intelli-
gence. He is currently pursuing a Ph.D. degree in com-
puter science at Syracuse University. Since 1996, he
has worked at High Performance Distributed Comput-
ing Laboratory at Computer Applications and Soft-
ware Engineering Center (CASE) in Syracuse Univer-
sity. His research interests include high performance
distributed computing and multimedia.

Salim Hariri is currently an Associate Profes-
sor in the Department of Electrical Engineer-
ing and Computer Science at Syracuse University.
He is the director of the High Performance Dis-
tributed Computing Laboratory at Syracuse Univer-
sity (www.atm.syr.edu). He received his Ph.D. in
computer engineering from University of Southern
Californiain 1986and an MSc from the Ohio State uni-
versity in 1982. His current research focuses on high

performance distributed computing, high speed net-
works and protocols, network management, and per-
formance.

