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Abstract

The implementation of an interface to support
cooperative work in a heterogeneous computing
environment is based on previously proposed definitions
referred to as Cooperative Work Model (CWM) and
Cooperative Work Language (CWL). The Interface for
Cooperative Work (ICW) and the Graphical Interface for
Cooperative Work (GICW) are the main two components
of a tool useful in the set up and control of a cooperative
working environment in a general purpose heterogeneous
computing platform.  This tool is described in this paper
as well as some desired characteristics to improve its
effectiveness.  The specification and control of a virtual

parallel machine  are illustrated with an algorithm for
3D-reconstruction from two stereoscopic images. Test
results on this application are also reported.

1. Introduction

Cooperative work involves the coordination of
several tasks during their execution. All tasks share a
common goal and cooperation rules coordinate their
actions that in turn use communication primitives to make
their interaction possible. There are two important factors
behind the motivation of this work. The first one is that
many problems can be organized as a set of cooperative
modules that could be executed in parallel. The second



Figure 1. Hierarchical Layout of Task Processor Assignments

factor is the recognition that message passing
computation  is becoming more accessible today. It is no
longer necessary to buy expensive devices to gain access
to large computational power. Existing general purpose
networks can now be used for cooperative work. These
factors lead to the definition of a Cooperative Work
Model (CWM) [18, 23], and a Cooperative Work
Language (CWL) [19] with the purpose of making the
specification of cooperative work, its parallelism and
distribution easier. CWM and CWL are inspired upon the
definition of Communicating Sequential Processes (CSP)
[6], and the basic notions of processes and pipes used in
Unix [17]. The Interface for Cooperative Work (ICW) and
the Graphical Interface for Cooperative Work (GICW)
are the main two components of the tool implemented
based on CWM and CWL. ICW is useful in the set up and
control of a cooperative working environment in a
heterogeneous computing platform. A hierarchical
specification of processes makes ICW different from other
schemes such as Cluster-M [3] and HeNCE [2].  The main
objective of Cluster-M is an efficient mapping of tasks
into a set of processors.  HeNCE, on the other hand, seeks
the specification of tasks given in the form of a task graph
such that parallelism is exploited. However, the nodes of
the task graph refer to lower level specification such as
procedures or routines. ICW allows a recursive refinement
such that lower granularity is also possible when the
application so requires it. Other tool that can also be
compared with ICW is the Wisconsin Wind Tunnel (WWT)
[16]. Unlike ICW, WWT is targeted to shared-memory
oriented applications and can be used to simulate the

behavior of hardware systems under design.
This paper describes the implementation of ICW and

GICW. First, in section 2 we review the basic elements of
the CWM model, i.e., tasks, cooperation rules, and
intertask communication. In section 3 and 4,
implementation issues are discussed. Section 5 deals
briefly with the stereoscopic image reconstruction and
section 6 reports some results obtained exploring task
distribution schemes using the tool presented in this
paper.

2. The Cooperative Work Model

The notion of cooperative work as a set of
interrelated tasks arranged in a hierarchical structure was
behind the proposed CWM model. In a distributed
heterogeneous computing environment, some if not all
tasks in the model can be executed in parallel and have
the capability to communicate with each other by explicit
message passing. The execution environment of tasks will
be governed by predefined cooperation rules. Interaction
among tasks will take place by using some established
communication primitives.

Tasks may be assigned to any suitable host in the
system. Figure 1 describes a possible hierarchical
arrangement of sets of tasks.  Task_A consists of its own
execution environment and the execution environment of
Task_B and Task_C. Task_B consists of its own execution
environment and that of n replicated tasks denoted as Bi.
Finally Task_C consists of its own execution environment
and that of tasks X in host Sp, Y in any host of architecture



Sr, Z in host Sz and W. Tasks X, Y, Z, W and the n copies
Bi do not contain other tasks inside them. Task W is a
special case. It should be executed in a particular host that
is not yet known. A search is required to determine the
location of such a task.  Note that this specification of
tasks is different from that used for Cluster-M [3]. CWL
specifies a hierarchical order governed by the cooperation
rules between tasks and without regard at this point to any
allocation scheme.

2.1. Tasks

The minimal work unit is the task. It is considered a
completely executable program (a process) following the
binary format of the operating system under which it was
created.

By definition the tasks specified have the following
characteristics:

• Each task starts and ends execution at some point
in time,

• When a task starts execution, optionally receives
some input parameters,

• No task shares memory with any other task, and
• The only way to share information with other

tasks is by explicit message passing.
 Any task may be classified according to the four

different criteria described in the next paragraphs.
 

 Types of tasks.  A task can be a generic task or a CW
task. A generic task is any general-purpose program that
can be executed by writing the command name in the
operating system prompt, like /bin/ls, /bin/cp,
$HOME/bin/print, etc. This kind of task does not have the
need to communicate with other tasks. A CW task is a
compiled executable program explicitly written for our
interface.
 
 Level in the hierarchy.  Under these criteria, any task
can be of any two types: atomic or composed. An atomic
task will be any executable program. It can be either, a
CW task or a generic task. Atomic tasks will consist only
of its own execution environment. A composed task can
only be a CW task. A composed task consists of its own
execution environment and that of one or more atomic or
composed tasks spawned by it. A composed task has its
own executable code. The tasks executed by a composed
task will be called members of a composed task, and the
composed task executing other tasks will be referred to as
the caller task.

 
 Place of execution. According to the possible places
where tasks can be executed, they can be classified as
explicitly located or not explicitly located tasks. A task
not explicitly located is executed in any host of a virtual
parallel computer. The place where these kinds of tasks

are to be executed will be determined dynamically at
runtime. An explicitly located task will be executed
always in the same host, or a set of hosts of the same
architecture. This is due to any of three reasons: (1) the
executable program exists only in one host of the system,
(2) the executable program was compiled for a particular
architecture or (3) it is desirable to execute the program in
some particular host because it may be the most suitable.
A special case occurs when a task can be explicitly
located but the host where the corresponding executable
program resides is unknown. In this case a locator
dynamically finds the host where the executable program
resides.
 
 Number of copies in a concurrent execution. Any
replicated task can be explicitly located or not explicitly
located. If they are explicitly located, then all copies of
the task will be executed concurrently in the same host or
in a subset of hosts of a specified architecture. Otherwise,
each copy will be executed in any host of the system.

 
 2.2. Cooperation Rules

 
 Every member task will have associated with it a

cooperation rule to control its execution. Three basic
cooperation rules are defined: SYNCP, ASYNCP and SEQ.
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 Figure 2. Behavior of SYNCP

 
 SYNCP stands for Synchronous Parallelism. When

some tasks are ruled by SYNCP all of them are started at
the same time and keep working concurrently. The caller
task will not end until all the member tasks have
terminated. However, any member task does not depend
on its caller task, nor on the tasks that were spawned at
the same time. As an example, consider the expression:

 
 T1:SYNCP[T11, T12]

 
 where T1 is the caller task and the member tasks will be
T11 and T12. Task T1 will not end until both T11 and T12
have terminated.  Figure 2 describes SYNCP.
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 Figure 3. Behavior of ASYNCP

 
ASYNCP stands for Asynchronous Parallelism. This rule
operates almost in the same way as SYNCP, but in this
case the caller task does not have to wait for all the
member tasks to terminate. Any task, including the caller
task can terminate without having to wait for the
termination of any other task working under this rule. The
same example posed for the last rule is useful for this one,
but with the difference that T1 will be able to terminate
independently of the termination time of tasks T11 and
T12.  Figure 3 describes the behavior of this rule.
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 Figure 4. Behavior of SEQ

 
 SEQ denotes a sequential execution. When using this

rule on a series of member tasks, the next task to be
executed will not be started until the previous one has
finished.  Figure 4 depicts its operation.

 
 2.3. Communications
 

 Each cooperating task in a CWL program has a
communication rank that specifies those tasks that
communicate with it. The communication rank of a task T
running in ICW is formed by:

• The composed task that spawned T
• All the tasks spawned at the same time as T
• All the tasks spawned by T

 Messages sent are saved in a buffer that is accessed
by the destination process when it is ready. If the message
is not yet in the buffer, the receiving process must wait
until it arrives.

 
 3. Implementation
 

 ICW maps the cooperative work defined by the
model into a specific distributed heterogeneous
environment. The interface provides all the necessary
mechanisms to distribute, replicate and locate any task to
be executed. The execution of the tasks will be monitored
and controlled to guarantee a complete execution of all
the programs or, in case of failure the interface will report
it. The goal of this feature is to make the debugging
process easier. To decide which tools to use in the ICW
implementation, several alternatives were analyzed. Two
of these alternatives include LAM (Local Area
Multicomputer)  [14] and PVM (Parallel Virtual
Machine) [4].  LAM is a full extension of the MPI [13]
(Message Passing Interface) standard. We initiated the
implementation of ICW using PVM mainly because it
offered several desirable features and it was available.
Currently the interface is being updated, through GICW,
to work with both, PVM and LAM at the user’s choice.

 3.1. Cooperative Work Language
 

 A typical program written in CWL is composed of six
sections:

• Architectures declaration (ARCHS)
• Hosts declaration (HOSTS)
• Tasks declaration (TASKS)
• Generic tasks declaration (GTASKS)
• Root task declaration (ROOT)
• Cooperative Work declaration (CW)

 The first two sections (ARCHS and HOSTS) contain
the list of names of architectures and hosts respectively.
These sections can be omitted if there are not explicitly
located tasks.

 The TASKS section contains the declaration of all the
tasks that are involved in the execution. This section
cannot be omitted.

 The GTASKS section lists all the generic tasks. The
interface will not accept any declared generic task to be
used as a composed task. The existence verification of
this type of tasks is carried out at runtime. This section is
optional.

 In both sections TASKS and GTASKS it is possible to
indicate that a task is going to be executed in a particular



host or a particular architecture. The operator → indicates
that a task is to be executed in a particular host and the
operator ⇒ indicates a particular architecture.

 The ROOT declaration indicates which task contains,
directly or indirectly, other tasks. In other words, the task
declared as ROOT is the superset in the hierarchy. The
ROOT task must be declared previously in the TASKS
declaration. If not, or if it is declared in the GTASKS
declaration, it will not be accepted.

 Finally, the CW declaration indicates the structure of
the execution, and the rules that control the relation
between tasks. Every task listed in this declaration will be
validated against the tasks declared in the TASKS and
GTASKS sections. A typical CWL program is shown in
Figure 5.

 
 3.2. Writing CW tasks

 
 Programs for the interface are generic C programs

with the only peculiarity that they must be compiled with
the preprocessor directive #include "ICW.h", which
contains all the necessary definitions to control the
execution and all the functions to communicate between
tasks. This file includes two special functions: void
ICW_init(int argc, char *argv[]) and void
ICW_end(void).

 
 
 
  ARCHS: SUN4,LINUX;
 
 HOSTS: afrodita, hefestos,
 cronos;
 TASKS:
  test,test1->cronos,test2,
  test3,test4,test5,
  test6=>LINUX;
 GTASKS: test7;
 ROOT: test;
 CW {
  test: SYNCP[test1,test2];
  test2: SEQ[test3,test4];
  test3: ASYNCP[test5(3)];
  test4: SYNCP[test6(10),test7];
 
 }
 

 
 Figure 5. Typical CWL program

 
 ICW_init() must be called as the first executable

instruction of the function main() in every CW task. This
function will receive from the caller the hierarchy of tasks
and then execute them, sending to every task the

appropriate information to trigger execution.
ICW_init() must be called with the standard
arguments received by the C program because that
information is used by the interface to determine the
operating environment.

The last instruction of an ICW program must be
ICW_end(). This function will test the correct
termination of all the tasks spawned by the current task
and will terminate with the appropriate exit code. To
avoid conflicts and unpredictable behavior every internal
function and variable of the interface start with the
characters "ICW_". A minimal expression of an ICW
program is shown in  Figure 6.

 
 Communication functions. All communication
primitives to be used in CW programs will be limited by
the communication rank of the tasks. To establish a
communication with any task outside the rank it will
suffice to either use some tasks as intermediaries to send
messages or use directly the PVM identification and
communication functions to determine the identity of the
target task, and to send messages, respectively. For
example, referring to Figure 1, task X may need to send a
message to task B1 but this task is outside the
communication rank of X.

 The ICW communication functions have been defined
for each possible data type to be transmitted and all of
them follow the same standard.

 
 
 

 #include <stdio.h>
 #include "ICW.h"
 
 void main(int argc, char *argv[]){
   ICW_init(argc, argv);
   ICW_end();
 }

    
 Figure 6. A minimal expression of a ICW

task program
 

 Typical functions to send and receive data have the
following prototypes:

• ICW_send_<datatype>(char *dest, int copy, int id,
<datatype> *buffer, int len)  where <datatype> is a valid
simple datatype in the programming language.

• ICW_send_string(char *dest, int copy, int id, char
*buffer).  This function is mainly used to send strings.

• ICW_receive_<datatype> (char *orig, int copy, int id,
<datatype> *buffer, int len, long tout).



• ICW_receive_string (char *orig, int copy, int id,
<datatype> *buffer,  long tout).

Parameters. The parameters char *dest or char *orig
indicates with an identifier of a program name, the task
sending or receiving messages. The valid identifiers are
ICW_member, ICW_caller, ICW_next,
ICW_previous or a program name. If a program name
is used, ICW will attempt to find a program within the
communication rank of the task that calls the
communication function with the specified name.

In the case of a replicated task with a copy parameter
different from zero, the message will be sent to or
received from the nth copy of the replicated task.

If the ICW_member is used there are three possible
results.  To send a message and if the copy parameter is
zero, the message will be sent to all the member tasks. To
send or receive a message, and if the copy parameter is
say n  (different from zero),  the message will be sent to
or received from the nth task of the member tasks.  To
receive a message and if the copy parameter is zero, a
message from any of the member tasks will be accepted.

If ICW_caller identifier is used the message will
be sent to, or  accepted from the caller task.

With ICW_next the message will be sent to or
accepted from the next task in the same level in the
hierarchy. The same happens with ICW_previous, but
in this case, it will be sent to or accepted from the
previous task in the same level in the hierarchy.

int copy indicates the number of copies of a
replicated task, or the number of member tasks a message
is sent to, or received from.

int id is an integer number that must match the
sending and receiving processes. It is used as a validation
of the message. A value of -1 in the receiver tells the
process to receive a message with any id number.

<type> *buffer is a pointer to the buffer that
contains the data to be sent or where it will be received.
Its type must match the type of the data in transit.

int len indicates  the length of the data buffer.
Receive functions have an additional parameter:
long tout indicates how long a process should wait

for a message to arrive. If it is zero the waiting time
defaults to 300 seconds.

3.3. Execution of CWL programs

CW tasks must be executed through a CWL program.
This program, although compiled, does not generate any
executable code. If the execution of all tasks is successful
the execution of the CWL program will be successful. If
only one of the tasks fails the overall execution
environment fails. The execution process is divided into

two stages. One stage is the compilation of the CWL
program, and the other stage is the execution of all the
tasks involved in the cooperative work specified.

Compilation stage. The first step of the compilation
stage attempts to contact the PVM daemon. If it is not
possible to do it, the interface attempts to start it up. If this
is not possible the program will not compile and the
interface exits with an appropriate error code. PVM uses a
hosts file to know which hosts will be included in the
parallel virtual machine. The hosts file name is
.icwhosts and resides in the user home directory. The
compiler will check that all the declared architectures in
the ARCHS declaration and hosts declared in the HOSTS
declaration really exist in the PVM environment,
otherwise, the interface will exit with an error. Next, the
compiler will compile the TASKS and GTASKS
declarations. The existence of executable programs in the
hosts of the virtual computer is verified at runtime.
However, the compiler will check the consistency of the
declarations. The compiler will also check that all the
architectures and hosts used in the declaration of the
explicitly located tasks had been previously declared in
the corresponding sections. Finally, it will check that the
ROOT task has been declared in the TASKS declaration as
well as all the tasks referenced in the CW declaration. The
result of compiling the CW section will be an internal
representation of the hierarchy followed during the
execution of tasks. This hierarchy is used at runtime to
determine the behavior of every part of the execution
process.

Execution stage. This stage consists of the execution of
the entire hierarchy of tasks involved in the cooperative
problem. The first to be executed is the ROOT task, which
will be forked and enrolled as a PVM process. The
interface will wait for the end of the execution of the
ROOT task. After three unsuccessful execution attempts
the interface will exit with an error. As previously
mentioned, the complete execution will be successful only
if all its components are executed successfully. If at least
one task fails, the overall execution process fails.

4. The Graphical Interface

An option to build and execute a CWL program is
through the Graphical Interface for Cooperative Work
(GICW). With the GICW is possible to create an efficient
grouping for the objective Cooperative Work in an
interactive and dynamic way.  Figure 7 shows a view of
GICW.

The GICW offers two operation modes. The first
mode manages information elements for the Cooperative



Work of an application via a set of windows. It integrates
the tasks (proper and generic), hosts and architectures.

Figure 7. Graphic Interface for Cooperative Work

The second is the Graphic Configuration mode. It
integrates all operations adding a Dynamic Configuration
Area (DCA). The DCA shows the task representation
looking like the graphs in the CWM shown in Figure 1. In
the central part of this area appears the root task
represented by an oval with its name and its cooperative
rule. Within this oval is possible to integrate composed
and atomic tasks required in the cooperative work of the
current application.

A composed task is also represented with a circle
with the name of the task and its cooperation rule. Small
circles are used to represent atomic tasks. To add one task
in the configuration it is selected from the box list located
in the left side of the DCA. The selected task is then
dragged into the root task area or into the area of a
previously created composed task.

To create or modify tasks, hosts, or architectures, it is
important to use the corresponding entries that appear in
the upper side of the configuration area. These windows
are useful to specify directly weather a task will execute
in a particular host or architecture.

To integrate the number of copies of an atomic task is
necessary to select it from de DCA and adjust the number
of copies in the window that appears for this purpose.
Code generation is performed according to the objects
appearing in the DCA and their grouping.  The output file
generated is identified with the application name and the
extension .icw. This file contains the CWL specification
of the cooperative work.

The option ICW Execution is selected from the menu
and a window appears to display execution results.

The implementation is based on the scripting
language Tcl and its graphical toolkit Tk (version 8.0)
which are widely portable and allow easy GUI
programming [15].

The GICW has no validation mechanism for the
existence of tasks. A parser is used when a configuration
file is loaded. The GICW extensions are based on the MPI
implementation of ICW. The implementation integrates 1)
a state monitor mechanism of the tasks that compound the
current cooperative work application, 2) the search in
alternative paths that are not in the PATH environment
variable, and  3) the dynamic configuration of the host in
the virtual machine.

5. Application: 3D Reconstruction

One of the most important features of human vision
is its capacity for perceiving a three dimensional world.
This perceptual capacity is achieved through a highly
evolved visual system composed of cooperative visual
modules, which are able to recognize objects and describe
the layout, and motion of our surroundings [21]. One
visual module that is most relevant for the perception of
depth is stereopsis [10]. This visual module takes as input
two images of a scene taken from  different locations (for
example, one taken by the left eye and the other by the
right eye) and computes the correspondence of features
which most likely originate from the same 3D surface
patch (Figure 8).  From the features correspondence is
possible to obtain the depth at these points [7].

We describe a distributed implementation of the
Pollard, Mayhew & Frisby  (PMF) algorithm for
stereoscopic reconstruction.   Our implementation has
been coded in  ICW and runs on a network of SUN and
Silicon Graphics  workstations [1]. The main stages of the
PMF algorithm for stereoscopic reconstruction [10] are
the following:

• Edge detection. The points with highest changes
in intensity are detected in each digital image.
This can be achieved with a variety of edge
detectors, such as the Marr-Hildreth operator,
Canny edge detector or Sobel’s [5]. For simplicity,
we have taken this last option.

• Stereoscopic correspondence. This is the core part
of the whole algorithm that finds the most likely
correspondences between edges in the left and
right images.

• Reconstruction. Once the correspondences have
been found it is possible to evaluate simple
arithmetic expressions to find the depth  at these
locations.
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Figure 8. Stages in stereoscopic reconstruction

We take images from two cameras with parallel
viewing directions to simplify the problem of stereo
correspondence, because in this case, the corresponding
features lie in epipolar lines. This means, that they are
approximately in the same raster line in the two images.

Using the constraint that corresponding features
usually have a disparity gradient DG less than one, we
apply a search process to find the best matches.  The
disparity gradient is defined for a pair of matches, where
each match associates one feature in the left image with
one feature in the right image.

If feature Pl = (plx,ply) in the left image is matched
with feature Pr = (prx,pry) in the right one, and feature Ql
= (qlx,qly) in the left is matched with feature             Qr =
(qrx,qry) in the right as shown in Figure 9,  then the
disparity D  for the match (Pl, Pr) is obtained as follows:

D(Pl,Pr) = plx −  prx.

The disparity difference DD for the pair of matches
(Pl,Pr) and (Ql,Qr) is just the disparity for the P match
minus the disparity for the Q match. That is:

DD((Pl,Pr),(Ql,Qr)) = d(Pl,Pr) − d(Ql,Qr)

Now imagine the two images superimposed. The
cyclopean separation CS  is the distance from the mid-
point of the line joining Pl and Pr to the mid-point of the
line joining Ql and Qr. The gradient DG is the absolute
value of the disparity difference divided by the cyclopean
separation.

Pl Pr

Ql Qr

Cyclopean
Separation

Figure 9. Geometry of the disparity gradient

In  Figure  9, the disparity difference is the difference
in length between the two horizontal lines. The cyclopean
separation is the length of the slanting line. The DG can
be expressed as follows:

DG = DD/SC ≤ 1

If a point (X,Y,Z) projects at (xl,y) and (xr,y) in the left
and right image respectively, we can find its position in
space, in terms of the disparity xl − xr, using the formulas
[7]:

   
X

B xl xr

xl xr
= +

−
( )

( )2

Y
By

xl xr
=

−

Z
Bf

xl xr
=

−

where B is the separation between the camera’s centers
and f is the focal length.

6. Comparative results

The distributed implementation consists of dividing
each image in bundles of lines and allocating a bundle to
each workstation. Once a bundle is processed, the results
are returned and concentrated by the host computer for
display as described in  Figure 10.
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Each processed image is composed of 240 rows and 320
columns. The size of each bundle is obtained as the
number of rows divided by the number of available
workstations. In our implementation the size of the bundle
can vary up to 240/n lines, where n = 1, 2, …, 12 is the
number of workstations.  For a uniform number of
features in each bundle, the lines that compose each
bundle are not taken consecutively but every 240/n lines.
Some results of the reconstruction are shown in Figure 11.

Two sets of tests were carried out. In the first set only
12 SUN units (models ELC, ILC and IPC with 24 Mbytes
of RAM) were used. For the second set of tests Silicon
Graphics (SGI) machines (Indy R4600 with 32 Mbytes of
RAM) where introduced. Under the second scheme, a
SUN unit distributes tasks to SGI units (labeled 1 to 5).
The results obtained are shown in Figures 12 and 13. Both
figures compare results obtained under no workload
conditions and normal workload conditions.

Figure 12 shows a monotonic improvement in the
execution time (this behavior is more consistent under a
normal workload condition) up until the number of units
reaches 10. An increase in the number of workstations

does not show any improvement in the overall execution
time. At this point, very likely the communication costs
involved with further partitioning of the application upset
any gain in execution times. In this regard similar
behavior can be observed with the combination SUN and
SGI workstations in Figure 13. Naturally, the introduction
of SGI units renders a dramatic improvement in the
execution time. However, particularly in the case of no
workload conditions, performance remains constant
indicating again the effect on communication costs. Under
normal workload conditions, improvements are noticeable
with additional units.

The objective of these experiments is to demonstrate
the feasibility of using ICW to execute distributed
applications. The results highlight the need to incorporate
appropriate task allocation and scheduling heuristics [3,
11,12,20] to map the set of tasks in the application to
suitable units in the system and improve execution times.
The integration of these schemes will make ICW a
complete and useful tool in the analysis and
implementation of large-scale parallel and distributed
applications.
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7. Conclusions and future work
At this time we have defined a model to specify

cooperative work and completed the implementation of
the first version of the interface (ICW).  We are currently
working on LAM 6.1 and refining some management
aspects of CW applications.

ICW is the first implementation of the CWM and the
CWL models and although the project is at an early stage,
trying to define the most desirable features has been the
most time consuming endeavor. This work however,
demonstrates the feasibility of the model, and will be the
base for the analysis and implementation of a more
complete CWL. The tool proposed facilitates the
introduction of scientists into the world of parallel and
distributed processing as it provides an easy interface to
the specification of parallelism, writing, and debugging of
communicating programs using installed general purpose

networked resources.
However, to optimize performance the interface must

be able to evaluate hosts configurations and detect the
states of those processing units used in the distribution.

The tool has been written to deal with C programs.
An upgraded version will incorporate transputers to
facilitate the specification of lower level parallelism.
Another expected development is to improve the
mechanisms to detect and, if possible, recover from
failures. Yet another important future development calls
for the integration of task assignment heuristics and their
evaluation to achieve a much improved task distribution
in terms of execution times and resource utilization. In
terms of future applications for which ICW will be used
include cooperative virtual environments and gesture
recognition [22] algorithms.
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Figure 12. Execution times on a homogeneous system
consisting of SUN workstations only.
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Figure 13. Execution times on a combined SUN-SGI configuration.
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