
Steps toward Understanding Performance in Java

Doug Lea

Computer Science Department

State University of New York at Oswego

Oswego NY 13126

Abstract

Java's design goals of portability, safety, and ubiq-

uity make it a potentially ideal language for large-scale

heterogeneous computing. One of the remaining chal-

lenges is to create performance models and associated

speci�cations and programming constructs that can be

used to reason about performance properties of systems

implemented in Java.

1 Introduction

Java is the �rst mass-market concurrent, dis-
tributed, object-oriented language. To the extent that
heterogeneous computing requires near-universal plat-
form support for a given language (\Write once, run
anywhere"), Java is currently the only answer for pro-
gramming non-experimental heterogeneous systems.
But is Java a good enough answer? Can it become
good enough?

Java provides support for the common demands of
system-wide heterogeneous computing: Concurrency
via threads, locks and monitors; Distribution via Re-
mote Method Invocation (RMI) and related frame-
works; User interaction via the AWT; Persistence via
serialization and database connections; Mobility via
class loaders; and Security via principals, security
managers, etc. Across all of these domains, as well
as base language constructs, the primary design goals
have surrounded portability, safety, historical prece-
dent, and minimality. These goals have been traded o�
against performance, exploitation of machine-speci�c
capabilities, and availability and real-time guarantees.

2 Performance Models

Reasoning about performance is an integral part
of system-level development. Currently, system de-
velopers face more extreme versions of the kinds of
problems that beset early developers of simple Java
applets and applications. Developers could not be
con�dent that a given Java Virtual Machine (JVM)
would meet even the most minimal correctness and
performance criteria needed for acceptable execu-
tion. The widespread deployment of Just-In-Time

compilers, dynamic compilation, and more e�cient
run-time systems have alleviated some of these con-
cerns. Others have been addressed by providing high-
level, portable choices for mapping designs to imple-
mentations with di�erent performance characteristics.
For example, user interface programmers may now
choose between \heavyweight" AWT components that
are implemented directly by native windowing sys-
tems versus \lightweight" components that are imple-
mented mainly in Java proper. Neither is always best
with respect to performance and other design criteria.

However, these concerns become much more chal-
lenging at a systems level, and have yet to be ad-
dressed systematically by JVM implementors. Exam-
ple issues include:

� How are threads mapped to di�erent processors
in SMPs?

� How is persistence mapped to high-performance
random access devices (mainly disks), serial de-
vices (mainly networks), transactional processing,
etc?

� How is locality exploited in message-based remote
communication?

� How is Java synchronization mapped to spinlocks
versus JVM scheduling versus kernel scheduling?

� How are known regularities exploited for resource
management?

� How can system-wide control and monitoring be
extended, for example to include checkpointing
and deadlock detection?

� How can soft-real-time requirements be used to
in
uence scheduling?

Java is currently silent about most of these issues,
leaving too much freedom in the hands of JVM and
Java library and tool implementors, and hence too
much uncertainty for developers to be able to reason



about performance. Right now, the only way for de-
velopers to deal with this is to build their own custom
JVMs, support libraries, and/or tools. While the lax-
ity of Java speci�cations allows this, it is an unaccept-
able solution in the long run since it allows developers
to reason about performance only on particular imple-
mentations.

An alternative is to construct a portable system-
level performance model for Java, that is honored
by JVM, library, and tool implementors. Aspects of
such models have been implicit in most in-the-small
performance-related e�orts. However, they must be
made explicit to scale to systems-level concerns. The
heart of a performance model is an abstraction of
a computer system providing just enough detail to
express mappings and choices among mappings, yet
noncommittal enough to apply to JVMs residing on
smartcards, supercomputers, and everything in be-
tween. Such a model could then be used to provide
various styles of rules:

� System-speci�ed mappings: If a capability exists,
it will be mapped in a certain fashion.

� Default mappings: Rules that apply unless over-
ridden by programmers.

� Programmer-speci�ed hints: Constructions that
allow programmers to heuristically in
uence or
tune parameters of a mapping. These need not
take the form of tuning APIs, but may instead for
example associate performance properties with
di�erent programming constructions.

� Programmer-speci�ed mappings: APIs that allow
programmers to plug in control modules and the
like.

� Multiple mappings: Di�erent APIs with di�er-
ent performance characteristics, that program-
mers may choose among.

� Intentional opacity: Reserving the right of imple-
mentors to make any mapping choice, unknow-
able by programmers.

The main challenge is to identify those components
of a performance model that signi�cantly impact the
ability to reason about performance, yet can be used
as the basis of usable, portable, and readily imple-
mentable programming constructions. Members of
the heterogeneous computing community have much
to contribute toward such e�orts.

Perhaps in an ideal world, all rules would be of the
�rst type, requiring \optimal" mappings to system

capabilities. However, the world is rarely this ideal.
For example, the bene�t of placing threads on di�er-
ent processors of an SMP generally varies inversely
with communication rates among threads. It is hard
to imagine placement strategies that would not ben-
e�t from information that reveals expected communi-
cation rates. Such hints would of course be ignored
or used in some other heuristic fashion (for example
to help choose between user-level versus kernel-level
threads) when programs are run on uniprocessors.

And even in an ideal world, some mappings must
remain opaque; for example those that would other-
wise reveal information that would compromise safety
and security properties.

JVM-level performance models may in turn give
rise to application-level models. For example, a com-
mon Java programming dilemna surrounds how to
map object communication to any of many available
forms, including direct method invocations, noti�ca-
tions among threads, JavaBean-style events, struc-
tured RMI-style messages, applet-style class trans-
port, serialized mobile-code-style commands, database
transactions, and so on. While performance concerns
are typically only one factor in such decisions, the abil-
ity to approximately predict the performance charac-
teristics of di�erent choices can lead to development
of more usable and more useful Java-based systems.


