
First, we describe the basic protocol that does not tolerate any failures. This protocol 
is based on using a spanning tree to deliver a message from a source to all the destina- 
tions rather than a flooding protocol that masks failures. To minimize the depth of the 
spanning tree, we assume that the minimum depth spanning trees have been calculated 
for each sender and distributed to each processor in the system. Thus, each processor 
can determine to which other processors a message needs to be sent based on the sender 
of the message. Given this approach, each application message requires 72 - 1 network 
messages, in contrast to the O(n2) network messages required by the masking algo- 
rithm. Furthermore, the maximum diameter of the group, which determines how quickly 
a message can be delivered after it has been received, is much smaller. Let d, denote 
the maximum diameter for the spanning tree algorithm and d, denote the diameter of 
the masking algorithm. For example, in the case of a completely connected network, 
d, = 1 whereas d, = O(n). Thus, depending of the network topology, messages may 
be delivered much earlier than in the masking algorithm. 

Second, we describe the detection modules for each of the failure models. Note that, 
although related, the traditional membership, e.g., [15, 5, 191, and system diagnosis, 
e.g., [ 18, 3,221, protocols do not provide adequate detection mechanisms. For example, 
failure detection mechanisms such as exchanging “alive” messages are not adequate 
even for detecting omission failures since a processor may omit to send some appli- 
cation messages but still send all the required “alive” messages. Thus, the detection 
mechanism must be based on comparing the sets of broadcast messages sent by each 
sender and received by each receiver. In the omission detection module, the comparison 
is accomplished by each sender periodically sending a summary of the messages that 
it has sent since the previous summary using a masking algorithm. Thus, the summary 
message is guaranteed to have both the atomicity and termination properties (the order 
property is not required for the summary messages and will therefore not be imple- 
mented). At the reception of a summary message, a processor compares the set of 
messages received to the summary and if a message is missing, a failure must have 
occurred. This comparison is all we need in the omission case. In the timing case we 
have to add checks for messages arriving too early or too late, and in the Byzantine 
case we have to deal with processors attempting to alter messages or faulty processors 
sending different versions of a message to different receivers. Note that each of the 
detection modules has to tolerate the failure model that it is designed to detect since 
otherwise a failure in this failure model could prevent a failure from being detected. 

When a failure is detected, the processor that detects the failure must notify other 
processors about the failure so all can switch to the masking algorithm. We assume that 
this notification is done by sending a special broadcast message using a masking algo- 
rithm. At the reception of such message, a processor will start sending any subsequent 
messages using the masking algorithms of [7]. This switching procedure is omitted 
from the following detection pseudo-code, but we assume it will be executed when a 
detection module detects and announces a failure. 

Note that such detection is always delayed and thus either the atomicity, order, 
or termination of a limited number of messages may be compromised. This issue is 
discussed in more detail in section 4. 



3.3 Basic Protocol: Alg(None) 

A message (typeMessage) has the following fields: sender of themessage (s: Processor), 
timestamp when the message was sent (t: Time), and data contents of the message (c: 
Contents). Any message can be uniquely identified based on the s and t fields since we 
assume that processor identifiers are unique and that a processor cannot send two or 
more messages at the same time. 

The termination time, A,, is A, = d,S + E. In the code segment below, H is 
the history of messages received but not yet delivered to the application. Initially H 
is empty. The operation send-spanning (sender, message) uses the spanning 
tree calculated for the sender processor of the message to forward the message to the 
next processors in the spanning tree. 

tusk Start: 
1. cycle wait-for-broadcast(c); var T Time t clock; 
2. vur m: Message t (myid,T,c); 
3. addm to H; 
4. send-spanning(myid,m); 
5. schedule Delivery(T) at T+A,; 
6. endcycle; 

tusk Relay: 
1. cycle receive(m:Message); vur T: Time t clock; 
2. add m to H; 
3. send-spanning(m.s,m); 
4. schedule Delivery(m.t) at m.t+A,; 
5. endcycle; 

tusk Delivery(T Time): 
1. vur val: Processor x Contents; 
2. val t {(m.s,m.c) I m E H A m.t = T }; 
3. sort val by processor name; 
4. fir all (s,c) E val in order do deliver(c); od; 

Correctness. The algorithm is trivial and thus, it is easy to see that it provides the 
atomicity, order, and termination properties if no failures occur. Atomicity is guaranteed 
since all processors are included in every spanning tree and thus, if a (correct) processor 
sends a message, all (correct) processors will eventually receive it and deliver it. Order 
is guaranteed and implemented the same way as the masking algorithm in [7]. By 
scheduling the Delivery task A, time units from the time T the message was sent, 
it is guaranteed that all message sent at (or before) time T will be received by every 
processor at time T + A,. Thus, the set of messages to be sorted is the same on all 
processors. Since the sorting algorithm is deterministic, the order of message delivery 
is therefore the same on all processors. Finally, termination is guaranteed under the no 
failures assumption since every processor receives the message sent at T by T + A, and 
will therefore deliver the message at T + A,. 



3.4 Omission Failure Module: Det(Omission) 

The detection of omission failures is based on detection messages that contain a summary 
of a set of messages sent since the previous detection message. In the following, we do 
not specify how often the detection message is sent, but the sending of the detection 
message could naturally be bound to the passage of time (e.g., every 2 seconds) or 
to message transmission frequency (e.g., after every xth broadcast message sent). The 
frequency of sending the detection message determines how quickly failures are detected 
and also the overhead of the detection mechanism. These issues are discussed in detail 
in section 4. 

In the following, we add an additional field to application messages that holds 
the timestamp of the previous detection message (prev: Time). This new field is used 
to detect omission of detection messages. We assume a new message type detection 
message (type DetMessage) has the same fields as a regular message except that the 
data contents field is replaced by a field that holds a set of message timestamps (h: 
Set of Time). In the code segment below, D is the history of detection messages. A 
detection message is included in D when first seen and removed only after all copies of 
the detection message are guaranteed to have been received. Furthermore, S is the set of 
messages sent since the previous detection message was sent. Initially, D and S are empty. 
Finally, prev is the timestamp of the previous detection message. Initially, prev is zero. 
We assume a function send-all (message) that sends message out on all outbound 
links from the processor, and a function send-all-but (message, link) that 
sends message out on all outbound links except link. For this algorithm, we use A, = 
~6 + d,S + E similar to the omission failure masking algorithm in [7]. 

Note that for brevity, we only present the additions to the Basic algorithm and not 
the complete algorithm. 

At Start before 4. (send-spanning): 
3.1 addTtoS; 
3.2 m.prev t prev; 

At Relay after 4. (schedule Delivery): 
4.1 ifm.prev+A, 5 T then CheckDetection(m.prev); 
4.2 else schedule CheckDetection(m.prev) at m.prev+A,;$; 

tusk DetectionStart: 
1. WY m: DetMessage t (myid,clock,S,prev); 
2. prev t m.t; 
3. addmtoD; 
4. send-all(m); 
5. s t 0; 
6. schedule DetectionEnd(m.t) at m.t+Am; 

tusk DetectionRelay: 
1. cycle receive-det(m:DetMessage,l:link); vur T: Time t clock; 
2. ifT 1 m.t + A, then “late message” iterute;j; 
3. ifm in D then “deja vu” iterute;j; 
4. add m to D; 
5. send-all-but(m,l); 



6. ifm.t+A, 5 T then CheckMessages( 
7. else schedule CheckMessages at m.t+A, ;Ji; 
8. ifm.prev+A, 5 T then CheckDetection(m.prev); 
9. else schedule CheckDetection(m.prev) at m.prev+A,;$; 
10. schedule DetectionEnd(m.t) at m.t+A, ; 
11. endcycle; 

tusk CheckMessages(m:DetMessage): 
1. for all t E m.h do 
2. if(t,m.s,c) $! H then “message omitted” announce failure; 
3. else remove (t,m.s,c) from H;$; 
4. Od; 

tusk CheckDetection(T: Time): 
1. if3 (t,m,c) E H such that t 5 T then “detection message omitted” unnouncefuiZure;j; 

tusk DetectionEnd(T: Time): 
1. delete all m: DetMessage such that m.t = T from D; 

The checking for omission failures is divided into two tasks: CheckMessages, which 
checks for omission of application messages, and CheckDetection, which checks for 
omission of detection messages. Note that CheckMessages can be executed any time 
after time T + A,, where T is the time the detection message was sent. This follows 
since, if the sender of the check message sent a broadcast message before time T, it 
is guaranteed to have been delivered before time T + A, in case there are no failures. 
The CheckDetection task can be executed any time after time m.prev + A, since if a 
detection message was sent at time m.prev, it would have arrived and been processed 
by this time. Note that if a sender has not sent a detection message, this will be detected 
if the sender ever sends an application message or another detection message. The 
DetectionEnd task that cleans up the history of detection messages D can only be 
executed at time T + A, since after this time any copies of the detection message sent 
at time T will be rejected by line 3 in the DetectionRelay task. If any detection message 
were to be accepted more than once, an omission failure would be falsely detected since 
messages are removed from H when the corresponding summary is processed. 

Correctness. Here we only argue about the correctness of the detection and not about 
what happens to the atomicity, order, and termination properties of broadcast between 
the occurrence of a failure and the corresponding adaptation. These issues will be 
addressed in section 4. The algorithm detects omission failures of the sender (with some 
limitations) and omission failures of processors in the spanning tree between the sender 
and the receiver. For the sender, if the sender does not send an application message (to 
some of the receivers), this will be detected when the detection message is processed 
on line 3 of CheckMessages and since the detection message is sent using the masking 
algorithm, it will be received at all receivers or none. Furthermore, if the sender does 
not send a detection message, this omission will be detected in CheckDetection after 
the subsequent application or detection message is received. For the processors between 
the sender and receiver, if a processor does not forward some message m;, the detection 



message that contains the timestamp of rni will eventually arrive at the receiver (since 
it uses the masking algorithm) and the omission is thus detected in CheckMessages. 
Note, however, that if the sender crashes before sending a detection message, some of 
the messages sent since the previous detection message may be omitted without being 
detected. This problem is addressed in section 3.7. 

3.5 Timing Failure Module: Det(Timing) 

In this section, we describe how timing failures can be detected. Note that an omission 
is a special case of a timing failure, namely one where the message is delayed indefi- 
nitely. Therefore, we have to include the omission failure detection mechanisms while 
attempting to detect timing failures, 

The detection of timing failures has two parts. One part is based on the separate 
detection messages and is almost identical to the detection of omission failures. The 
other part deals with the detection of early or late messages. This can be done by 
maintaining information about how many hops a message has made. To do this, we add 
a new field (hops: 1 . . . n) to each message. 

For the timing failure case, A, is still the same (since the basic protocol assumes no 
failures) but A, = ~(6 + E) + d6 + E similar to the A, in the timing failure masking 
protocol in [7]. 

At Start replace line 2 by: 
2. vur m: Message c (myid,T,c,prev,l); 

At Relay before 2. (add m to H): 
1.1 ifT < m.t - E m.hops then “too early” unnouncefuilure;j; 
1.2 ifT > m.t + (E + 6) m.hops then “too late” unnouncefuilure;j; 
1.3 m.hops t m.hops + 1; 

At DetectionStart replace line 1 by: 
1. vur m: DetMessage t (myid,clock,S,l); 

At DetectionRelay before 4. (add m to D): 
3.3 ifT < m.t - E m.hops then “too early” unnouncefuilure;$; 
3.4 ifT > m.t + (E + 6) m.hops then “too late” unnouncefuilure;j; 
3.5 m.hops t m.hops + 1; 

Correctness. The omission failure module will detect all timing failures where a mes- 
sage is delayed indefinitely, so these additions only need to detect early and late timing 
failures. An early timing failure will be detected if the sender’s clock runs faster than 
expected and thus the timestamp on the message is too large or if a processor’s clock 
runs slower than expected and thus the time when the message was received at the local 
clock appears to be too early. A late timing failure will be detected if a processor or 
link is slower than expected or if a processor that receives a message from a link has 
clock that is running too fast. In any case, the failure will be detected. Note that we do 
not need to determine which processor or link is faulty, just that something is not as 
expected, since we adapt by switching into a masking protocol. 



4.2 Adaptation Period 

The adaptation period starts when the first processor has detected a failure. From this 
moment, say T, it will take at most A, time units before all the processors have been 
notified and have switched into the masking algorithm. Thus, the processor will have 
a pool of messages sent after time T - Ad but before T + A, that are sent using the 
spanning tree algorithm. The number of messages in this pool is naturally determined 
by the transmission frequency fa . 

A number of options are available for processing these messages: 

1. These messages may be delivered to the application, possibly with a note that all 
the properties may not be guaranteed. 

2. These messages may be rejected, potentially in conjunction with a request for 
retransmission. Requesting such a retransmission is easy since the detection com- 
ponent always knows the first message for which a failure occurred. 

3. When a processor detects a failure, it can set N, = 0, recalculate Ad, and use this 
new value for all the messages in the pool. This ensures that all the messages in the 
pool are checked against the detection messages before delivery and thus, we can 
choose to deliver only correct messages in correct order. Note, however, that if we 
detect other omitted or corrupted messages, we have to resort to either the first or 
second option. 

The first alternative does not delay the execution of the system, but the atomicity 
and order guarantees are no longer valid. The second alternative guarantees that the 
correct set of message in the correct order is be delivered, but the messages may be 
greatly delayed. Finally, the third one delays messages briefly, but attempts to maintain 
the order and atornicity properties if possible. 

5 Discussion 

5.1 Potential Extensions 

The basic scheme presented in this paper could be extended to provide even better 
performance and/or fault-tolerance in number of ways. In the following we discuss 
three potential alternatives. 

Reverse Adaptation. So far we have only addressed adaptation from a non-tolerant 
algorithm to a masking algorithm. The reverse adaptation is almost equally simple. The 
most interesting issue is how to detect that failures are no longer occurring and how to 
switch the algorithm. 

Detecting the lack of omission failures while using the masking algorithm is simple. 
If there are no omission failures, a copy of every message should be received from 
each inbound link before time T + A,, where T is the time when the message was 
sent. Thus, if each message in H is augmented with a counter that is incremented every 
time a copy of the message is received, this counter should be equal to the number of 
inbound links at the time the message is delivered (Delivery task). We can maintain a 



counter of subsequent message deliveries without detecting an omission failure. This 
counter is naturally initialized to 0 when a failure is detected. Then when it reaches a 
specified threshold value, the processor may suggest an adaptation to the spanning tree 
algorithm. Note that it is not enough for one processor to note a lack of failures for the 
system to be failure free. In particular, due to the failure masking, only the immediate 
neighbors of a faulty processor would ever detect such omission failures. Therefore, a 
global agreement has to be reached before an adaptation can be made. 

Similar detection mechanisms could be easily outlined for the other failure models. 
Note that the global agreement protocol must always tolerate the failure model in 
question. 

i-masking Spanning Trees. The spanning tree algorithm and the flooding-based mask- 
ing algorithm are in a sense the extremes when it comes to using redundancy to mask 
failures. The masking algorithm attempts to mask the maximum number of failures, 
whereas the spanning tree algorithm does not mask any failures. It would be possible to 
develop protocols that mask a fixed (small) number of failures using limited forms of 
redundancy and run them with the detection modules that would deal with larger number 
of failures if they occur. For example, the spanning tree algorithm could be transformed 
into l-masking spanning tree algorithm by using a spanning tree where there are two 
independent paths from each sender to each receiver. 

Given such l-masking, 2-masking, etc. spanning trees, the adaptive protocol could 
be refined to switch into the next more redundant protocol when a failure is detected 
rather than directly adapting to the algorithm that uses maximum redundancy. 

Detection without Explicit Detection Messages. The detection messages that are sent 
using a masking algorithm simplify the protocols as well as their analysis. However, 
it would be possible to detect failures without explicit detection messages, namely, by 
encoding the necessary detection information in the application messages. In particular, 
we can apply the idea of a context graph introduced in the Psync system [ 171. A context 
graph is a graph where nodes are messages and edges are causal dependencies between 
messages. In particular, if a processor sends message m2 after it has delivered message 
ml, there will be an edge from m2 to ml. When amessage is sent, the message identifiers 
of its causal predecessors are included in the message. This information can be used for 
failure detection, since if a processor receives a message and determines that it has not 
received one of the predecessors, a failure has occurred. 

This idea could be applied to the adaptive atomic broadcast protocol. Specifically, 
each application message sent using the spanning tree algorithm could include the 
message identifiers of the latest message received from each processor. This message 
identifier would contain the sender identifier, time stamp, and in the case of Byzan- 
tine failures, the message signature (signed message digest). When such a message is 
received, the receiving processor would compare this set against the messages in its 
message history H. 

A number of issues have to be considered, however. First, to have this approach be 
able to deal with the same number of failures as the masking algorithm, care must be 
taken to choose the spanning trees for individual processors carefully. In particular, the 



set of spanning trees must have the following property: if there is a (unidirectional) path 
from a sender to a receiver that could be employed by the masking algorithm, then every 
link of this path must be contained in at least one spanning tree. This guarantees that 
spanning trees use all possible paths and links, and thus, the failure of one processor or 
link does not sever all paths in the sum of the spanning trees from a sender to a receiver. 
Second, the detection delay, and thus Ad, are different than for the masking algorithm. 
It turns out that we can use the same formulas, except that in the formula for A,, 6 must 
be replaced by S + l/ frin since the detection information is not necessarily forwarded 
until in the next application message sent by this processor. 

5.2 Related Work 

Adaptive protocols are widely used in a variety of contexts. In some cases, such proto- 
cols change their behavior based on the execution environment (e.g., adaptive routing 
algorithms [2]) or their input (e.g., adaptive sorting algorithms [9]). In other cases, the 
adaptation is required because of some type of failure, such as the failure of a link or a 
switch in a computer network. There has also been some work specifically addressing 
adaptation to failures [ 10,4, 141. Furthermore, non-masking fault-tolerant programs can 
typically be viewed as adaptive programs in the sense that they adapt or react to failures. 
Despite this work, however, no-one to date has attempted to adapt to a change in failure 
model in the way done here. Note that in the typical case of adapting to a failure, the 
system performs some corrective action (change routing, add replicas) but continues 
using the same algorithm. However, in our approach, if a failure is detected in the failure 
model that we are prepared to adapt to, the algorithm being executed is changed. 

Finally, our approach, as well as adaptive programming in general, resembles self- 
stabilization [8, 211. A self-stabilizing distributed program is one that is guaranteed to 
reach a legitimate state regardless of its initial state. This guarantee also applies if the 
program is in an illegal state during execution, due to a transient failure for example. 
So, a self-stabilizing program essentially adapts to the occurrence of an illegal state by 
correcting the state. 

One of the main differences between self-stabilization and our approach is that our 
adaptation changes the algorithm rather than attempting to stabilize the system into 
a legitimate state. Furthermore, an adaptive program actually detects that a change 
has occurred whereas traditional self-stabilizing algorithms guarantee convergence to a 
legitimate state without first detecting the existence of an illegal state. The relationship 
between adaptive programming and self-stabilization is explored in more detail in [ 121, 
which demonstrates that at least a form of adaptive programming can be considered a 
generalization of self-stabilization. On the other hand, self-stabilization is often more 
general in the sense that it can tolerate multiple causes for illegal states, whereas 
adaptive programs typically focus on adapting to one specific change in the execution 
environment. 

Note that adaptivity and self-stabilization can be used together to gain the benefits 
of both. For example, [l] presents an adaptive routing protocol that adapts between two 
self-stabilizing algorithms, while [ 1 l] proposes combining traditional fault-tolerance 
and self-stabilization to construct programs that tolerate both systemic and process 
failures. 



6 Conclusions 

This paper has presented an approach for reducing the cost of fault tolerance using 
adaptation. Using an example, we have demonstrated that if the application can tolerate 
a short bounded period during which service guarantees are violated, the adaptive 
approach can be much faster and less expensive than an approach based on failure 
masking. Future work will include implementing and testing the protocols presented in 
this paper using the Cactus system [20, 131, as well as applying the approach to other 
fault-tolerant distributed algorithms. 
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