
First, we describe the basic protocol that does not tolerate any failures. This protocol
is based on using a spanning tree to deliver a message from a source to all the destina-
tions rather than a flooding protocol that masks failures. To minimize the depth of the
spanning tree, we assume that the minimum depth spanning trees have been calculated
for each sender and distributed to each processor in the system. Thus, each processor
can determine to which other processors a message needs to be sent based on the sender
of the message. Given this approach, each application message requires 72 - 1 network
messages, in contrast to the O(n2) network messages required by the masking algo-
rithm. Furthermore, the maximum diameter of the group, which determines how quickly
a message can be delivered after it has been received, is much smaller. Let d, denote
the maximum diameter for the spanning tree algorithm and d, denote the diameter of
the masking algorithm. For example, in the case of a completely connected network,
d, = 1 whereas d, = O(n). Thus, depending of the network topology, messages may
be delivered much earlier than in the masking algorithm.

Second, we describe the detection modules for each of the failure models. Note that,
although related, the traditional membership, e.g., [15, 5, 191, and system diagnosis,
e.g., [18, 3,221, protocols do not provide adequate detection mechanisms. For example,
failure detection mechanisms such as exchanging “alive” messages are not adequate
even for detecting omission failures since a processor may omit to send some appli-
cation messages but still send all the required “alive” messages. Thus, the detection
mechanism must be based on comparing the sets of broadcast messages sent by each
sender and received by each receiver. In the omission detection module, the comparison
is accomplished by each sender periodically sending a summary of the messages that
it has sent since the previous summary using a masking algorithm. Thus, the summary
message is guaranteed to have both the atomicity and termination properties (the order
property is not required for the summary messages and will therefore not be imple-
mented). At the reception of a summary message, a processor compares the set of
messages received to the summary and if a message is missing, a failure must have
occurred. This comparison is all we need in the omission case. In the timing case we
have to add checks for messages arriving too early or too late, and in the Byzantine
case we have to deal with processors attempting to alter messages or faulty processors
sending different versions of a message to different receivers. Note that each of the
detection modules has to tolerate the failure model that it is designed to detect since
otherwise a failure in this failure model could prevent a failure from being detected.

When a failure is detected, the processor that detects the failure must notify other
processors about the failure so all can switch to the masking algorithm. We assume that
this notification is done by sending a special broadcast message using a masking algo-
rithm. At the reception of such message, a processor will start sending any subsequent
messages using the masking algorithms of [7]. This switching procedure is omitted
from the following detection pseudo-code, but we assume it will be executed when a
detection module detects and announces a failure.

Note that such detection is always delayed and thus either the atomicity, order,
or termination of a limited number of messages may be compromised. This issue is
discussed in more detail in section 4.

3.3 Basic Protocol: Alg(None)

A message (typeMessage) has the following fields: sender of themessage (s: Processor),
timestamp when the message was sent (t: Time), and data contents of the message (c:
Contents). Any message can be uniquely identified based on the s and t fields since we
assume that processor identifiers are unique and that a processor cannot send two or
more messages at the same time.

The termination time, A,, is A, = d,S + E. In the code segment below, H is
the history of messages received but not yet delivered to the application. Initially H
is empty. The operation send-spanning (sender, message) uses the spanning
tree calculated for the sender processor of the message to forward the message to the
next processors in the spanning tree.

tusk Start:
1. cycle wait-for-broadcast(c); var T Time t clock;
2. vur m: Message t (myid,T,c);
3. addm to H;
4. send-spanning(myid,m);
5. schedule Delivery(T) at T+A,;
6. endcycle;

tusk Relay:
1. cycle receive(m:Message); vur T: Time t clock;
2. add m to H;
3. send-spanning(m.s,m);
4. schedule Delivery(m.t) at m.t+A,;
5. endcycle;

tusk Delivery(T Time):
1. vur val: Processor x Contents;
2. val t {(m.s,m.c) I m E H A m.t = T };
3. sort val by processor name;
4. fir all (s,c) E val in order do deliver(c); od;

Correctness. The algorithm is trivial and thus, it is easy to see that it provides the
atomicity, order, and termination properties if no failures occur. Atomicity is guaranteed
since all processors are included in every spanning tree and thus, if a (correct) processor
sends a message, all (correct) processors will eventually receive it and deliver it. Order
is guaranteed and implemented the same way as the masking algorithm in [7]. By
scheduling the Delivery task A, time units from the time T the message was sent,
it is guaranteed that all message sent at (or before) time T will be received by every
processor at time T + A,. Thus, the set of messages to be sorted is the same on all
processors. Since the sorting algorithm is deterministic, the order of message delivery
is therefore the same on all processors. Finally, termination is guaranteed under the no
failures assumption since every processor receives the message sent at T by T + A, and
will therefore deliver the message at T + A,.

3.4 Omission Failure Module: Det(Omission)

The detection of omission failures is based on detection messages that contain a summary
of a set of messages sent since the previous detection message. In the following, we do
not specify how often the detection message is sent, but the sending of the detection
message could naturally be bound to the passage of time (e.g., every 2 seconds) or
to message transmission frequency (e.g., after every xth broadcast message sent). The
frequency of sending the detection message determines how quickly failures are detected
and also the overhead of the detection mechanism. These issues are discussed in detail
in section 4.

In the following, we add an additional field to application messages that holds
the timestamp of the previous detection message (prev: Time). This new field is used
to detect omission of detection messages. We assume a new message type detection
message (type DetMessage) has the same fields as a regular message except that the
data contents field is replaced by a field that holds a set of message timestamps (h:
Set of Time). In the code segment below, D is the history of detection messages. A
detection message is included in D when first seen and removed only after all copies of
the detection message are guaranteed to have been received. Furthermore, S is the set of
messages sent since the previous detection message was sent. Initially, D and S are empty.
Finally, prev is the timestamp of the previous detection message. Initially, prev is zero.
We assume a function send-all (message) that sends message out on all outbound
links from the processor, and a function send-all-but (message, link) that
sends message out on all outbound links except link. For this algorithm, we use A, =
~6 + d,S + E similar to the omission failure masking algorithm in [7].

Note that for brevity, we only present the additions to the Basic algorithm and not
the complete algorithm.

At Start before 4. (send-spanning):
3.1 addTtoS;
3.2 m.prev t prev;

At Relay after 4. (schedule Delivery):
4.1 ifm.prev+A, 5 T then CheckDetection(m.prev);
4.2 else schedule CheckDetection(m.prev) at m.prev+A,;$;

tusk DetectionStart:
1. WY m: DetMessage t (myid,clock,S,prev);
2. prev t m.t;
3. addmtoD;
4. send-all(m);
5. s t 0;
6. schedule DetectionEnd(m.t) at m.t+Am;

tusk DetectionRelay:
1. cycle receive-det(m:DetMessage,l:link); vur T: Time t clock;
2. ifT 1 m.t + A, then “late message” iterute;j;
3. ifm in D then “deja vu” iterute;j;
4. add m to D;
5. send-all-but(m,l);

6. ifm.t+A, 5 T then CheckMessages(
7. else schedule CheckMessages at m.t+A, ;Ji;
8. ifm.prev+A, 5 T then CheckDetection(m.prev);
9. else schedule CheckDetection(m.prev) at m.prev+A,;$;
10. schedule DetectionEnd(m.t) at m.t+A, ;
11. endcycle;

tusk CheckMessages(m:DetMessage):
1. for all t E m.h do
2. if(t,m.s,c) $! H then “message omitted” announce failure;
3. else remove (t,m.s,c) from H;$;
4. Od;

tusk CheckDetection(T: Time):
1. if3 (t,m,c) E H such that t 5 T then “detection message omitted” unnouncefuiZure;j;

tusk DetectionEnd(T: Time):
1. delete all m: DetMessage such that m.t = T from D;

The checking for omission failures is divided into two tasks: CheckMessages, which
checks for omission of application messages, and CheckDetection, which checks for
omission of detection messages. Note that CheckMessages can be executed any time
after time T + A,, where T is the time the detection message was sent. This follows
since, if the sender of the check message sent a broadcast message before time T, it
is guaranteed to have been delivered before time T + A, in case there are no failures.
The CheckDetection task can be executed any time after time m.prev + A, since if a
detection message was sent at time m.prev, it would have arrived and been processed
by this time. Note that if a sender has not sent a detection message, this will be detected
if the sender ever sends an application message or another detection message. The
DetectionEnd task that cleans up the history of detection messages D can only be
executed at time T + A, since after this time any copies of the detection message sent
at time T will be rejected by line 3 in the DetectionRelay task. If any detection message
were to be accepted more than once, an omission failure would be falsely detected since
messages are removed from H when the corresponding summary is processed.

Correctness. Here we only argue about the correctness of the detection and not about
what happens to the atomicity, order, and termination properties of broadcast between
the occurrence of a failure and the corresponding adaptation. These issues will be
addressed in section 4. The algorithm detects omission failures of the sender (with some
limitations) and omission failures of processors in the spanning tree between the sender
and the receiver. For the sender, if the sender does not send an application message (to
some of the receivers), this will be detected when the detection message is processed
on line 3 of CheckMessages and since the detection message is sent using the masking
algorithm, it will be received at all receivers or none. Furthermore, if the sender does
not send a detection message, this omission will be detected in CheckDetection after
the subsequent application or detection message is received. For the processors between
the sender and receiver, if a processor does not forward some message m;, the detection

message that contains the timestamp of rni will eventually arrive at the receiver (since
it uses the masking algorithm) and the omission is thus detected in CheckMessages.
Note, however, that if the sender crashes before sending a detection message, some of
the messages sent since the previous detection message may be omitted without being
detected. This problem is addressed in section 3.7.

3.5 Timing Failure Module: Det(Timing)

In this section, we describe how timing failures can be detected. Note that an omission
is a special case of a timing failure, namely one where the message is delayed indefi-
nitely. Therefore, we have to include the omission failure detection mechanisms while
attempting to detect timing failures,

The detection of timing failures has two parts. One part is based on the separate
detection messages and is almost identical to the detection of omission failures. The
other part deals with the detection of early or late messages. This can be done by
maintaining information about how many hops a message has made. To do this, we add
a new field (hops: 1 . . . n) to each message.

For the timing failure case, A, is still the same (since the basic protocol assumes no
failures) but A, = ~(6 + E) + d6 + E similar to the A, in the timing failure masking
protocol in [7].

At Start replace line 2 by:
2. vur m: Message c (myid,T,c,prev,l);

At Relay before 2. (add m to H):
1.1 ifT < m.t - E m.hops then “too early” unnouncefuilure;j;
1.2 ifT > m.t + (E + 6) m.hops then “too late” unnouncefuilure;j;
1.3 m.hops t m.hops + 1;

At DetectionStart replace line 1 by:
1. vur m: DetMessage t (myid,clock,S,l);

At DetectionRelay before 4. (add m to D):
3.3 ifT < m.t - E m.hops then “too early” unnouncefuilure;$;
3.4 ifT > m.t + (E + 6) m.hops then “too late” unnouncefuilure;j;
3.5 m.hops t m.hops + 1;

Correctness. The omission failure module will detect all timing failures where a mes-
sage is delayed indefinitely, so these additions only need to detect early and late timing
failures. An early timing failure will be detected if the sender’s clock runs faster than
expected and thus the timestamp on the message is too large or if a processor’s clock
runs slower than expected and thus the time when the message was received at the local
clock appears to be too early. A late timing failure will be detected if a processor or
link is slower than expected or if a processor that receives a message from a link has
clock that is running too fast. In any case, the failure will be detected. Note that we do
not need to determine which processor or link is faulty, just that something is not as
expected, since we adapt by switching into a masking protocol.

4.2 Adaptation Period

The adaptation period starts when the first processor has detected a failure. From this
moment, say T, it will take at most A, time units before all the processors have been
notified and have switched into the masking algorithm. Thus, the processor will have
a pool of messages sent after time T - Ad but before T + A, that are sent using the
spanning tree algorithm. The number of messages in this pool is naturally determined
by the transmission frequency fa .

A number of options are available for processing these messages:

1. These messages may be delivered to the application, possibly with a note that all
the properties may not be guaranteed.

2. These messages may be rejected, potentially in conjunction with a request for
retransmission. Requesting such a retransmission is easy since the detection com-
ponent always knows the first message for which a failure occurred.

3. When a processor detects a failure, it can set N, = 0, recalculate Ad, and use this
new value for all the messages in the pool. This ensures that all the messages in the
pool are checked against the detection messages before delivery and thus, we can
choose to deliver only correct messages in correct order. Note, however, that if we
detect other omitted or corrupted messages, we have to resort to either the first or
second option.

The first alternative does not delay the execution of the system, but the atomicity
and order guarantees are no longer valid. The second alternative guarantees that the
correct set of message in the correct order is be delivered, but the messages may be
greatly delayed. Finally, the third one delays messages briefly, but attempts to maintain
the order and atornicity properties if possible.

5 Discussion

5.1 Potential Extensions

The basic scheme presented in this paper could be extended to provide even better
performance and/or fault-tolerance in number of ways. In the following we discuss
three potential alternatives.

Reverse Adaptation. So far we have only addressed adaptation from a non-tolerant
algorithm to a masking algorithm. The reverse adaptation is almost equally simple. The
most interesting issue is how to detect that failures are no longer occurring and how to
switch the algorithm.

Detecting the lack of omission failures while using the masking algorithm is simple.
If there are no omission failures, a copy of every message should be received from
each inbound link before time T + A,, where T is the time when the message was
sent. Thus, if each message in H is augmented with a counter that is incremented every
time a copy of the message is received, this counter should be equal to the number of
inbound links at the time the message is delivered (Delivery task). We can maintain a

counter of subsequent message deliveries without detecting an omission failure. This
counter is naturally initialized to 0 when a failure is detected. Then when it reaches a
specified threshold value, the processor may suggest an adaptation to the spanning tree
algorithm. Note that it is not enough for one processor to note a lack of failures for the
system to be failure free. In particular, due to the failure masking, only the immediate
neighbors of a faulty processor would ever detect such omission failures. Therefore, a
global agreement has to be reached before an adaptation can be made.

Similar detection mechanisms could be easily outlined for the other failure models.
Note that the global agreement protocol must always tolerate the failure model in
question.

i-masking Spanning Trees. The spanning tree algorithm and the flooding-based mask-
ing algorithm are in a sense the extremes when it comes to using redundancy to mask
failures. The masking algorithm attempts to mask the maximum number of failures,
whereas the spanning tree algorithm does not mask any failures. It would be possible to
develop protocols that mask a fixed (small) number of failures using limited forms of
redundancy and run them with the detection modules that would deal with larger number
of failures if they occur. For example, the spanning tree algorithm could be transformed
into l-masking spanning tree algorithm by using a spanning tree where there are two
independent paths from each sender to each receiver.

Given such l-masking, 2-masking, etc. spanning trees, the adaptive protocol could
be refined to switch into the next more redundant protocol when a failure is detected
rather than directly adapting to the algorithm that uses maximum redundancy.

Detection without Explicit Detection Messages. The detection messages that are sent
using a masking algorithm simplify the protocols as well as their analysis. However,
it would be possible to detect failures without explicit detection messages, namely, by
encoding the necessary detection information in the application messages. In particular,
we can apply the idea of a context graph introduced in the Psync system [171. A context
graph is a graph where nodes are messages and edges are causal dependencies between
messages. In particular, if a processor sends message m2 after it has delivered message
ml, there will be an edge from m2 to ml. When amessage is sent, the message identifiers
of its causal predecessors are included in the message. This information can be used for
failure detection, since if a processor receives a message and determines that it has not
received one of the predecessors, a failure has occurred.

This idea could be applied to the adaptive atomic broadcast protocol. Specifically,
each application message sent using the spanning tree algorithm could include the
message identifiers of the latest message received from each processor. This message
identifier would contain the sender identifier, time stamp, and in the case of Byzan-
tine failures, the message signature (signed message digest). When such a message is
received, the receiving processor would compare this set against the messages in its
message history H.

A number of issues have to be considered, however. First, to have this approach be
able to deal with the same number of failures as the masking algorithm, care must be
taken to choose the spanning trees for individual processors carefully. In particular, the

set of spanning trees must have the following property: if there is a (unidirectional) path
from a sender to a receiver that could be employed by the masking algorithm, then every
link of this path must be contained in at least one spanning tree. This guarantees that
spanning trees use all possible paths and links, and thus, the failure of one processor or
link does not sever all paths in the sum of the spanning trees from a sender to a receiver.
Second, the detection delay, and thus Ad, are different than for the masking algorithm.
It turns out that we can use the same formulas, except that in the formula for A,, 6 must
be replaced by S + l/ frin since the detection information is not necessarily forwarded
until in the next application message sent by this processor.

5.2 Related Work

Adaptive protocols are widely used in a variety of contexts. In some cases, such proto-
cols change their behavior based on the execution environment (e.g., adaptive routing
algorithms [2]) or their input (e.g., adaptive sorting algorithms [9]). In other cases, the
adaptation is required because of some type of failure, such as the failure of a link or a
switch in a computer network. There has also been some work specifically addressing
adaptation to failures [10,4, 141. Furthermore, non-masking fault-tolerant programs can
typically be viewed as adaptive programs in the sense that they adapt or react to failures.
Despite this work, however, no-one to date has attempted to adapt to a change in failure
model in the way done here. Note that in the typical case of adapting to a failure, the
system performs some corrective action (change routing, add replicas) but continues
using the same algorithm. However, in our approach, if a failure is detected in the failure
model that we are prepared to adapt to, the algorithm being executed is changed.

Finally, our approach, as well as adaptive programming in general, resembles self-
stabilization [8, 211. A self-stabilizing distributed program is one that is guaranteed to
reach a legitimate state regardless of its initial state. This guarantee also applies if the
program is in an illegal state during execution, due to a transient failure for example.
So, a self-stabilizing program essentially adapts to the occurrence of an illegal state by
correcting the state.

One of the main differences between self-stabilization and our approach is that our
adaptation changes the algorithm rather than attempting to stabilize the system into
a legitimate state. Furthermore, an adaptive program actually detects that a change
has occurred whereas traditional self-stabilizing algorithms guarantee convergence to a
legitimate state without first detecting the existence of an illegal state. The relationship
between adaptive programming and self-stabilization is explored in more detail in [121,
which demonstrates that at least a form of adaptive programming can be considered a
generalization of self-stabilization. On the other hand, self-stabilization is often more
general in the sense that it can tolerate multiple causes for illegal states, whereas
adaptive programs typically focus on adapting to one specific change in the execution
environment.

Note that adaptivity and self-stabilization can be used together to gain the benefits
of both. For example, [l] presents an adaptive routing protocol that adapts between two
self-stabilizing algorithms, while [1 l] proposes combining traditional fault-tolerance
and self-stabilization to construct programs that tolerate both systemic and process
failures.

6 Conclusions

This paper has presented an approach for reducing the cost of fault tolerance using
adaptation. Using an example, we have demonstrated that if the application can tolerate
a short bounded period during which service guarantees are violated, the adaptive
approach can be much faster and less expensive than an approach based on failure
masking. Future work will include implementing and testing the protocols presented in
this paper using the Cactus system [20, 131, as well as applying the approach to other
fault-tolerant distributed algorithms.

References

1. A. Arora, M. Gouda, and T. Herman. Composite routing protocols. In Proceedings of the
IEEE Symposium on Parallel and Distributed Processing, Dee 1990.

2. P. Bell and K. Jabbour. Review of point-to-point network routing algorithms. IEEE Com-
munications Magazine, 24(1):34-38,1986.

3. R. Bianchini, K. Goodwin, and D. Nydick. Practical application and implementation of
distributed system-level diagnosis theory. In Proceedings of the 20th Symposium on Fault-
Tolerant Computing, pages 332-339, Jun 1990.

4. A. Bondavalli, F. Di Giandomenico, and J. Xu. A cost-effective and flexible scheme for
software fault tolerance. Journal of Computer Systems Science and Engineering, 8:234-244,
1993.

5. F. Cristian. Reaching agreement on processor-group membership in synchronous distributed
systems. Distributed Computing, 4:175-187, 1991.

6. F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From simple message
diffusion to Byzantine agreement. In Proceedings of the 15th Symposium on Fault-Tolerant
Computing, pages 200-206, Ann Arbor, MI, Jun 1985.

7. F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From simple message
diffusion to Byzantine agreement. Information and Computation, 118(1):158-179,1995.

8. E. W. Dijkstra. Self-stabilization in spite of distributed control. Communications of the
ACM, 17(11):643-644, Nov 1974.

9. V. Estivill-Castro and D. Woods. A survey of adaptive sorting algorithms. ACM Computing
Surveys, 24(4):441-476, Dee 1992.

10. J. Goldberg, I. Greenberg, and T. Lawrence. Adaptive fault tolerance. In Proceedingsof the
IEEE Workshop on Advances in Parallel and Distributed Systems, pages 127-132, Princeton,
NJ, Ott 1993.

11. A. Gopal and K. Perry. Unifying self-stabilization and fault-tolerance. In Proceedings of

the 12th ACM Symposium on Principles of Distributed Computing, pages 195-206, 1993.
12. M. Gouda and T. Herman. Adaptive programming. IEEE Transactions on Software Engi-

neering, SE-17:911-921,199l.
13. M. Hiltunen, X. Han, and R. Schlichting. Real-time issues in Cactus. In Proceedings of

the IEEE Workshop on Middleware for Distributed Real-Time Systems and Services, pages
214-221, San Francisco, CA, Dee 1997.

14. M. Hiltunen and R. Schlichting. Adaptive distributed and fault-tolerant systems. Computer
Systems Science and Engineering, 11(5):125-133, Sep 1996.

15. H. Kopetz, G. Grunsteidl, and J. Reisinger. Fault-tolerant membership service in a syn-
chronous distributed real-time system. In A. Avizienis and J. Laprie, editors, Dependable
Computingfor Critical Applications, pages 41 l-429. Springer-Verlag, Wien, 1991.

16. L. Lamport, R. Shostak, and P M. The Byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382-401, Jul 1982.

17. L. Peterson, N. Buchholz, and R. Schlichting. Preserving and using context information in
interprocess communication. ACM Transactions on Computer Systems, 7(3):217-246, Aug
1989.

18. F. Preparata, G. Metze, and R. Chien. On the connection assignment problem of diagnosable
systems. IEEE Transactions on Electronic Computer, EC-16(6):848-854, Dee 1967.

19. R. Rajkumar, S. Fakhouri, and E Jahanian. Processor group membership protocols: Spec-
ification, design, and implementation. In Proceedings of the 12th Symposium on Reliable
Distributed Systems, pages 2-l 1, Princeton, NJ, Ott 1993.

20. R. Schlichting and M. Hiltunen. The Cactus project. http://www.cs.arizona.edu/cactus/.
21. M. Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45-67, Mar 1993.
22. C. Walter, M. Hugue, and N. Suri. Continual on-line diagnosis of hybrid faults. In

F. Criskian, G. Le Lann, and T. Lunt, editors, Dependable Computing for Critical Appli-
cations 4, pages 233-249. Springer-Verlag, Wien, 1995.

This article was processed using the I&%T$ macro package with LLNCS style

